San Diego County Regional Airport Authority

Fiscal Year 2013-2014 Industrial Stormwater Permit Annual Report

SAN DIEGO REGIONAL WATER QUALITY CONTROL BOARD 2019 JUN 30 PM 3 35

July 2014

í i

()

San Diego County Regional Airport Authority

Fiscal Year 2013-2014 Industrial Stormwater Permit Annual Report

July 2014

State Water Resources Control Board

To Interested Parties:

2013-2014 ANNUAL REPORT ANNUAL REPORT FOR STORM WATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITIES

Attached is the 2013-2014 annual report that must be mailed to your Regional Board office by July 1, 2014. <u>Dischargers within the Los Angeles Regional Board</u> are required to electronically submit their annual reports via the Storm Water Multi-Application Reporting and Tracking System (SMARTS), email with a PDF attachment(s) to <u>losangeles@waterboards.ca.gov</u>, or mail a disk. Although electronic submittals are not mandatory for dischargers in other regions, we encourage all dischargers to register and use SMARTS. We anticipate that a new Industrial General Permit (IGP) will be adopted sometime next year that will mandate electronic reporting for future reporting years.

To register to use SMARTS please visit: https://smarts.waterboards.ca.gov and download the SMARTS LRP registration form and instructions. Please fill out the form and mail it back to: SMARTS Registration, P.O. Box 1977, Sacramento, CA 95812. Once a complete registration form is received, a login name and password will be emailed to you.

For SMARTS registration questions or information please contact the SMARTS help center at 1-866-563-3107 or by email at <u>stormwater@waterboards.ca.gov</u>.

To receive email updates on Storm Water Industrial permitting issues <u>including updates</u> on the IGP reissuance process (hearings, workshops, schedules, etc.), please sign up at <u>http://www.waterboards.ca.gov/resources/email_subscriptions/swrcb_subscribe.shtml</u> The Storm Water program currently maintains five email lists:

- Storm Water Database Issues
- Storm Water Construction Permitting Issues
- Storm Water Industrial Permitting Issues
- Storm Water Municipal Permitting Issues
- Sustainable Development

Sincerely,

Storm Water Section

California Environmental Protection Agency

Recycled Paper

STATE OF CALIFORNIA STATE WATER RESOURCES CONTROL BOARD 2013-2014 ANNUAL REPORT FOR STORM WATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITIES

Reporting Period July 1, 2013 through June 30, 2014

An Annual Report is required to be submitted to your local Regional Water Quality Control Board (Regional Board) by July 1 of each year. This document must be certified and signed, under penalty of perjury, by the appropriate official of your company. Many of the Annual Report questions require an explanation. Please provide explanations on a separate sheet as an attachment. Retain a copy of the completed Annual Report for your records.

Please circle or highlight any information contained in Items A, B, and C below that is new or revised so we can update our records. Please remember that a Notice of Termination and new Notice of Intent are required whenever a facility operation is relocated or changes ownership.

If you have any questions, please contact your Regional Board Industrial Storm Water Permit Contact. The names, telephone numbers, and e-mail addresses of the Regional Board contacts, as well as the Regional Board Offices addresses are indicated below.

REGIONAL BOARD INFORMATION:

San Diego Region 9174 Sky Park Court, Suite 100 San Diego, CA 92123 Contact: Tony Felix Tel: (858) 636-3134 Email: Tfelix@waterboards.ca.gov

	GENERAL	INFORM	ATION
--	---------	---------------	-------

A. Facility Information:

San Diego Int Airpor 3225 N Harbor Dr San Diego, CA 92101 WDID NO: 9 371018035 SIC Code(s):

):

4581 Airports, Flying Fields, and Airport Terminal Services

B. Facility Operator Information:

San Diego County Regional Airport Authority PO Box 82776 San Diego, CA 92138

C. Facility Billing Information:

San Diego County Regional Airport Authority PO Box 82776 San Diego, CA 92138 Contact: Richard Gilb Email: RGilb@san.org Tel: (619) 400-2790

Contact: Richard Gilb

Email: RGilb@san.org

Tel: (619) 400-2790

Contact: Richard Gilb Email: RGilb@san.org Tel: (619) 400-2790

Additional Table D Parameters: BOD,COD,NH3

2013-2014 ANNUAL REPORT

SPECIFIC INFORMATION

MONITORING AND REPORTING PROGRAM

D.	<u>SA</u>	MPLING A	ND AN	ALYSIS EXEMPTIO	NS AND REDUC	TIONS			
	1.			ng period, was your fa th sections B.12 or 1			g and ana	alyzing	samples from two storm events in
		Y	ES	Go to Item D.2			×	NO	Go to Section E
	2.			ason your facility is e t page of the appropr					es from two storm events. Attach a or v.
		i. 🔲	Parti	cipating in an Approv	ed Group Monito	oring Plan		Grou	p Name :
		ii. 🔲	Subr	nitted No Exposure	Certification (N	NEC)		Date	Submitted:
			Re-e	evaluation Date:					
			Doe	s facility continue to s	atisfy NEC conc	ditions?		YES	NO
		iii. 🔲	Subi	nitted Sampling Re	duction Certific	ation (SRC	C)	Date	Submitted:
			Re-e	evaluation Date:					
			Doe	s facility continue to s	satisfy SRC cond	ditions?		YES	NO
		iv.	Rece	eived Regional Board	Certification		Certifica	ation Da	ate:
		v. 🔲	Rece	eived Local Agency (Certification			Cetific	cation Date:
	3.	lf you ch	ecked	boxes i or iii above, v	vere you schedu	iled to sam	ple one s	torm e	vent during the reporting year?
		Υ	ES	Go to Section E				NO	Go to Section F
	4.	If you ch	ecked	boxes ii, iv, or v, go t	o Section F.				
E.	SAN	APLING AN	D AN	ALYSIS RESULTS					
	1.	How ma	ny stor	m events did you sa	mple?	3		2.i or iii.	ttach explanation (if you checked above, only attach explanation if you
	2.			storm water sample ity operating hours?				son tha	t produced a discharge during
		X	YES					NO,	attach explanation (Please note that if you do not sample the first storm event, you are still required to sample 2 storm events)
	3.	How ma	ny stor	m water discharge lo	ocations are at y	our facility?		15	

4.	For san	r each storm event sampled, did you collect and analyze a nple from each of the facilitys' storm water discharge locations?		YES, go	to Item E	.6 🗶 NO
5.		as sample collection or analysis reduced in accordance h Section B.7.d of the General Permit?	X	YES		NO, attach explanation
	If "" tha	YES [®] , attach documentation supporting your determination t two or more drainage areas are substantially identical.				
	Dat	te facility's drainage areas were last evaluated May 2014				
6.	We	ere all samples collected during the first hour of discharge?		YES	X	NO, attach explanation
7.	Wa wo	as <u>all</u> storm water sampling preceded by three (3) rking days without a storm water discharge?	\boxtimes	YES		NO, attach explanation
8.	We	ere there any discharges of stormwater that had been nporarily stored or contained? (such as from a pond)		YES	×	NO, go to Item E.10
9.	cont	you collect and analyze samples of temporarily stored or tained storm water discharges from two storm events? one storm event if you checked item D.2.i or iii. above)		YES		NO, attach explanation
10.	Spe	tion B.5. of the General Permit requires you to analyze storm wa cific Conductance (SC), Total Organic Carbon (TOC) or Oil and torm water discharges in significant quantities, and analytical pa	Greas	e (O&G),	other pol	lutants likely to be present
	a.	Does Table D contain any additional parameters related to your facility's SIC code(s)?	X	YES		NO, Go to Item E.11
	b.	Did you analyze all storm water samples for the applicable parameters listed in Table D?	X	YES		NO
	C.	If you did not analyze all storm water samples for the applicable Table D parameters, check one of the following reasons:				
		In prior sampling years, the parameter(s) have not b consecutive sampling events. Attach explanation	een de	etected in	significar	nt quantities from two
		The parameter(s) is not likely to be present in storm discharges in significant quantities based upon the f				
		Other. Attach explanation				

- 11. For each storm event sampled, attach a copy of the laboratory analytical reports and report the sampling and analysis results using **Form 1** or its equivalent. The following must be provided for each sample collected:
 - Date and time of sample collection
 - Name and title of sampler.
 - Parameters tested.
 - Name of analytical testing laboratory.
 - Discharge location identification.

- Testing results.
- Test methods used.
- Test detection limits.
- Date of testing.
- Copies of the laboratory analytical results.

F. QUARTERLY VISUAL OBSERVATIONS

1.	Authorized	Non-Storm	Water	Discharges
----	------------	-----------	-------	------------

YES

Section B.3.b of the General Permit requires quarterly visual observations of all authorized non-storm water discharges and their sources.

a. Do authorized non-storm water discharges occur at your facility?

 40	
X	

NO Go to Item F.2

b. Indicate whether you visually observed all authorized non-storm water discharges and their sources during the quarters when they were discharged. Attach an explanation for any "NO" answers. Indicate "N/A" for quarters without any authorized non-storm water discharges.

July -September	YES	□ NO	×	N/A	October-December	YES 🗌 NO	X N/A
January-March	X YES	□ NO	П	N/A	April-June	YES NO	X N/A

- c. Use Form 2 to report quarterly visual observations of authorized non-storm water discharges or provide the following information.
 - i. name of each authorized non-storm water discharge
 - ii. date and time of observation
 - iii. source and location of each authorized non-storm water discharge
 - iv. characteristics of the discharge at its source and impacted drainage area/discharge location
 - v. name, title, and signature of observer
 - vi. any new or revised BMPs necessary to reduce or prevent pollutants in authorized non-storm water discharges. Provide new or revised BMP implementation date.

2. Unauthorized Non-Storm Water Discharges

Section B.3.a of the General Permit requires quarterly visual observations of all drainage areas to detect the presence of unauthorized non-storm water discharges and their sources.

a. Indicate whether you visually observed all drainage areas to detect the presence of unauthorized nonstorm water discharges and their sources. Attach an explanation for any "NO" answers.

July -September	X YES	NO	October-December	YES	NO NO
January-March	X YES	NO NO	April-June	X YES	NO

b. Based upon the quarterly visual observations, were any unauthorized non-storm water discharges detected?

X YES	NO NO	Go to item F.2.d	
-------	-------	------------------	--

c. Have each of the unauthorized non-storm water discharges been eliminated or permitted?

X YES NO Attach explanation	×	YES		NO	Attach explanation	
-----------------------------	---	-----	--	----	--------------------	--

- d. Use Form 3 to report quarterly unauthorized non-storm water discharge visual observations or provide the following information.
 - i. name of each unauthorized non-storm water discharge.
 - ii. date and time of observation.
 - iii. source and location of each unauthorized non-storm water discharge.
 - iv. characteristics of the discharge at its source and impacted drainage area/discharge location.
 - v. name, title, and signature of observer.
 - any corrective actions necessary to eliminate the source of each unauthorized non-storm water discharge and to clean impacted drainage areas. Provide date unauthorized non-storm water discharge(s) was eliminated or scheduled to be eliminated.

G. MONTHLY WET SEASON VISUAL OBSERVATIONS

Section B.4.a of the General Permit requires you to conduct monthly visual observations of storm water discharges at all storm water discharge locations during the wet season. These observations shall occur during the first hour of discharge or, in the case of temporarily stored or contained storm water, at the time of discharge.

 Indicate below whether monthly visual observations of storm water discharges occurred at <u>all</u> discharge locations. Attach an explanation for any "NO" answers. Include in this explanation whether any eligible storm events occurred during scheduled facility operating hours that did not result in a storm water discharge, and provide the date, time, name and title of the person who observed that there was no storm water discharge.

- 2. Report monthly wet season visual observations using Form 4 or provide the following information.
 - a. date, time, and location of observation
 - b. name and title of observer
 - c. characteristics of the discharge (i.e., odor, color, etc.) and source of any pollutants observed.
 - any new or revised BMPs necessary to reduce or prevent pollutants in storm water discharges. Provide new or revised BMP implementation date.

ANNUAL COMPREHENSIVE SITE COMPLIANCE EVALUATION (ACSCE)

H. ACSCE CHECKLIST

Section A.9 of the General Permit requires the facility operator to conduct one ACSCE in each reporting period (July 1-June 30). Evaluations must be conducted within 8-16 months of each other. The SWPPP and monitoring program shall be revised and implemented, as necessary, within 90 days of the evaluation. The checklist below includes the minimum steps necessary to complete a ACSCE. Indicate whether you have performed each step below. Attach an explanation for any "NO" answers.

- Have you inspected all potential pollutant sources and industrial activities areas? XES The following areas should be inspected:
 - areas where spills and leaks have occured during the last year.
 - outdoor wash and rinse areas.
 - process/manufacturing areas.
 - loading, unloading, and transfer areas.
 - waste storage/disposal areas.
 - dust/particulate generating areas.
 - erosion areas.

building repair, remodeling, and construction

NO

NO

NO

- material storage areas
- vehicle/equipment storage areas
- truck parking and access areas
- rooftop equipment areas
- vehicle fueling/maintenance areas
- non-storm water discharge generating areas
- Have you reviewed your SWPPP to assure that its BMPs address existing potential pollutant sources and industrial activities areas?
- Have you inspected the entire facility to verify that the SWPPP's site map, is up-to-date? The following site map items should be verified:
 - facility boundaries
 - outline of all storm water drainage areas
 - areas impacted by run-on

- storm water discharges locations
- storm water collection and conveyance system
- structural control measures such as catch basins, berms, containment areas, oil/water separators, etc.

YES

	4.	Have you reviewed all General Permit compliance recipience the last annual evaluation?	
		since the last annual evaluation?	YES NO
		The following records should be reviewed:	
		 quarterly authorized non-storm water discharge visual observations monthly storm water discharge visual observation records of spills/leaks and associated 	 quarterly unauthorized non-storm water discharge visual observations Sampling and Analysis records preventative maintenance inspection and maintenance records
		clean-up/response activities	
	5.	Have you reviewed the major elements of the SWPPP compliance with the General Permit?	to assure YES NO
		The following SWPPP items should be reviewed:	
		 pollution prevention team list of significant materials description of potential pollutant sources 	 assessment of potential pollutant sources identification and description of the BMPs to be implemented for each potential pollutant source
	6.	Have you reviewed your SWPPP to assure that a) the in reducing or preventing pollutants in storm water disc non-storm water discharges, and b) the BMPs are bein	charges and authorized
		The following BMP categories should be reviewed:	
		 good housekeeping practices spill response employee training erosion control quality assurance 	 preventative maintenance material handling and storage practices waste handling/storage structural BMPs
	7. e**	Has all material handling equipment and equipment no implement the SWPPP been inspected?	veded to
l.	AC	SCE EVALUATION REPORT	
	The	a facility operator is required to provide an evaluation rep	ort that includes:
	:	identification of personnel performing the evaluation the date(s) of the evaluation necessary SWPPP revisions	 schedule for implementing SWPPP revisions any incidents of non-compliance and the corrective actions taken.
	Use	e Form 5 to report the results of your evaluation or devel	op an equivalent form.
J.	AC	SCE CERTIFICATION	
	The	e facility operator is required to certify compliance with th tify compliance, both the SWPPP and Monitoring Progra	e Industrial Activities Storm Water General Permit. To must be up to date and be fully implemented.
		sed upon your ACSCE, do you certify compliance with th ivities Storm Water General Permit?	e Industrial
		ou answered "NO" attach an explanation to the ACSCE appliance with the Industrial Activities Storm Water Gener	

ATTACHMENT SUMMARY

Answer the questions below to help you determine what should be attached to this annual report. Answer NA (Not Applicable) to guestions 2-4 if you are not required to provide those attachments.

1.	Have you attached Forms 1,2,3,4, and 5 or their equivalent?	YES (N	fandatory)	
2.	If you conducted sampling and analysis, have you attached the laboratory analytical reports?	X YES	NO NO	NA
3.	If you checked box II, III, IV, or V in item D.2 of this Annual Report, have you attached the first page of the appropriate certifications?	YES	NO NO	X NA
4.	Have you attached an explanation for each "NO" answer in items E.1, E.2, E.5-E.7, E.9, E.10.c, F.1.b, F.2.a, F.2.c, G.1, H.1-H.7, or J?	YES	NO	NA

ANNUAL REPORT CERTIFICATION

I am duly authorized to sign reports required by the INDUSTRIAL ACTIVITIES STORM WATER GENERAL PERMIT (see Standard Provision C.9) and I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those person directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Printed Name:	Paul Manasjan			
Signature:	p.man	i	Da <u>te:</u>	6/24/14
Title: Director	, Environmental Affairs Dep	artment		

Attachment 1

Explanations and Discussion of Analytical Data

1) Explanations to General Information (pages 1-7 of the Annual Report)

The following explanations are provided where necessary to comply with the General Annual Report format. The item numbers are presented in the order of the Annual Report.

E.5

In 2005, the Airport Authority initiated a project to analyze the hydrology of the airport and to evaluate the existing storm water sampling plan. The project resulted in the development of a new storm water sampling plan that replaced many of the previous sample sites and also added additional sampling locations. That sampling plan identified pollutants of concern and provided statistical power to future analysis of pollutant loads. The sampling plan was finalized in November 2005, and was implemented for the first time in the 2005-2006 wet season. The sampling plan divides the airport into fourteen drainage basins. Ten sites within those 14 basins were chosen to represent the areas of industrial activity at the airport. The sampling plan was reviewed and incorporated into the storm water management program in March 2008.

Prior to the 2010-2011 wet season, construction associated with the Terminal 2 West expansion led to an alternate sampling site being established in Drainage Basin 12 (C-B12-9a). The same year, alternate sampling site C-B01-1a was established after the original sampling location was fitted with a drain inlet insert BMP that restricted sampling. During the 2013-2014 wet season, alternate sampling locations CB06-5a and CB09-10b were established to be downstream of newly installed structural treatment control BMPs. Sampling site C-B05-3 could no longer be sampled because the north side development constructions had removed the storm drain lines where C-B05-3 was previous located, which resulted in only 9 sampling locations remaining.

E.6

Program experience has led to the practical determination that sample collection can only be accomplished during storm events with a rainfall intensity of at least 0.10 inches per hour over at least a two-hour period. With ten sample sites identified for the monitoring program, practice has shown that more than one hour of time elapses between the initiation of sampling and the collection of the tenth sample. Such was the case again this year, and therefore, not all samples were collected during the first hour of discharge.

G.1

During the months of November 2013, January 2014, March 2014, and May 2014, there were no rain events occurring during daylight hours of sufficient intensity or duration to allow for visual observations. The history of storm events during daylight hours for this reporting period is provided on Form 4.

2) Summary Discussion of Analytical Results

The following information provides a brief discussion of the analytical data included with this Annual Report (see Form 1 and attached Analytical Lab Reports). A total of 18 samples were collected at the nine sampling sites during this reporting period. Results for the analytes were compared to the USEPA Multi-Sector General Permit benchmarks or benchmarks from other sources when the USEPA Multi-Sector General Permit does not have a benchmark.

A total of 872 analyses were performed on the 18 samples collected during the 2013-2014 reporting period. Of these 872 analyses, a total of 133 had exceeded the benchmarks, a slight decrease from the 135 exceedances in FY12-13, but an increase from previous years (i.e., 102 exceedances in FY11-12, 50 exceedances in FY10-11 and 113 exceedances in FY09-10). It should be noted that more analytes were added during FY13-14 compared to previous years. These analytes were added to provide additional information related to 303(d) listings and investigative orders pertinent to the airport, and were not mandated per the current Industrial General Permit. The pollutants median concentrations and benchmark s50% or more of the time were total and dissolved copper, total and dissolved zinc, COD, ammonia, BOD, total aluminum, total iron, and enterococcus. Historically total and dissolved copper and total and dissolved zinc have exceeded benchmark levels in previous monitoring reports and are associated with day to day operations at an airport.

Pollutant of Concern	Median Concentration	Benchmarks	No. of Analyses	No. of Exceedances	Exceedance Frequency (%)
General Chemistry					
Ammonia (mg/L)	2.775	2.14 ^(a)	18	11	61
BOD (mg/L)	60	30 ^(a)	18	11	61
COD (mg/L)	189.5	120 ^(a)	18	12	67
MBAS (mg/L)	0.275	0.5 ^(b)	18	0	0
Oil & Grease (mg/L)	1.35	15 ^(a)	18	0	0
pH (pH Units)	6.66	6.0 - 9.0 ^(a)	18	2	11
SC (µmhos/cm)	258.5	900 ^(b)	18	1	6
TSS (mg/L)	56.5	100 ^(a)	18	3	17
Metals (µg/L)					
Ag, dissolved	ND	3.2 ^(a)	8	0	0
Ag, total	ND	3.8 ^(a)	8	0	0
Al	1050	750 ^(a)	18	11	61
As, dissolved	ND	150 ^(a)	8	0	0

As, total	ND	150 ^(a)	8	0	0
Cd, dissolved	ND	2 ^(a)	8	0	0
Cd, total	ND	2.1 ^(a)	8	0	0
Cr III, dissolved	ND	1,700 ^(c)	8	0	0
Cr III, total	ND	550 ^(c)	8	0	0
Cr VI, dissolved	ND	16 ^(c)	8	0	0
Cr VI, total	ND	16.3 ^(c)	8	0	0
Cr, dissolved	ND	50 ^(b)	8	0	0
Cr, total	ND	50 ^(b)	8	0	0
Cu, dissolved	78	14 ^(a)	18	16	89
Cu, total	120	14 ^(a)	18	17	94
Fe	1400	1,000 ^(a)	18	11	61
Hg, dissolved	ND	1.2 ^(a)	8	0	0
Hg, total	ND	1.4 ^(a)	8	0	0
Ni, dissolved	11.35	469 ^(a)	8	0	0
Ni, total	13.95	470 ^(a)	8	0	0
Pb, dissolved	ND	64.9 ^(a)	8	1	13
Pb, total	ND	82 ^(a)	18	2	11
Zn, dissolved	345	120 ^(a)	18	14	78
Zn, total	715	120 ^(a)	18	15	83
PAHs (µg/L)					
Acenaphthene	ND	9 ^{.70^(d)}	8	0	0
Acenaphthylene	ND	300 ^(d)	8	0	0
Anthracene	ND	300 ^(d)	8	0	0
Benzo (a) anthracene	ND	300 ^(d)	8	0	0
Benzo (a) pyrene	ND	300 ^(d)	8	0	0
Benzo (b) fluoranthene	ND	300 ^(d)	8	0	0
Benzo (g,h,i) perylene	ND	300 ^(d)	8	0	0
Benzo (k) fluoranthene	ND	300 ^(d)	8	0	0
Chrysene	ND	300 ^(d)	8	0	0
Dibenzo(a,h)anthracene	ND	300 ^(d)	8	0	0
Fluoranthene	ND	42 ^(a)	8	0	0
Fluorene	ND	300 ^(d)	8	0	0
Indeno (1,2,3-cd) pyrene	ND	300 ^(d)	8	0	0
Naphthalene	ND	2,350 ^(d)	8	0	0
Phenanthrene	ND	300 ^(d)	8	0	0
Pyrene	ND	300 ^(d)	8	0	0

PCBs (µg/L)					
PCB-1016	ND	0.4 ^(e)	18	0	0
PCB-1221	ND	0.4 ^(e)	18	0	0
PCB-1232	ND	0.4 ^(e)	18	0	0
PCB-1242	ND	0.4 ^(e)	18	0	0
PCB-1248	ND	0.4 ^(e)	18	0	0
PCB-1254	ND	0.4 ^(e)	18	0	0
PCB-1260	ND	0.4 ^(e)	18	0	0
Organochlorine Pesticides	(µg/L)				
4,4′-DDD	ND	3.6 ^(d)	8	0	0
4,4′-DDE	ND	14 ^(d)	8	0	0
4,4′-DDT	ND	0.13 ^(d)	8	0	0
Aldrin	ND	1.3 ^(d)	8	0	0
Chlordane	ND	0.09 ^(d)	8	0	0
Dieldrin	ND	0.71 ^(d)	8	0	0
Endosulfan I	ND	0.034 ^(d)	8	0	0
Endosulfan II	ND	0.034 ^(d)	8	0	0
Endosulfan sulfate	ND	0.027 ^(f)	8	0	- 0
Endrin	ND	0.037 ^(a)	8	0	0
Endrin aldehyde	ND	0.0018 ^(c)	8	0	0
HCH-alpha	ND	0.012 ^(f)	8	0	0
HCH-beta	ND	0.012 ^(f)	8	0	0
HCH-delta	ND	0.012 ^(f)	8	0	0
HCH-gamma (Lindane)	ND	0.16 ^(d)	8	0	0
Heptachlor	ND	0.053 ^(d)	8	0	0
Heptachlor epoxide	ND	0.053 ^(d)	8	0	0
Toxaphene	ND	0.21 ^(d)	.8	0	0
TPH (mg/L)					
Diesel Range Organics (C10-C24)	ND	0.056-0.14 ^(f)	18	0	0
Jet-A	ND	0.5 ^(f)	18	0	0
Oil Range Organics (C22- C36)	0.15	0.5 ^(f)	18	0	0
Glycols (mg/L)					
Ethylene glycol	ND	140 ^(f)	2	0	0

Microbiology (CFU/100 n	nL)				
Total Coliforms	4635	1,000 ^(f)	4	2	50
Fecal Coliforms	45	200 ^(f)	4	1	25
Enterococcus	1055	276 ^(g)	4	3	75

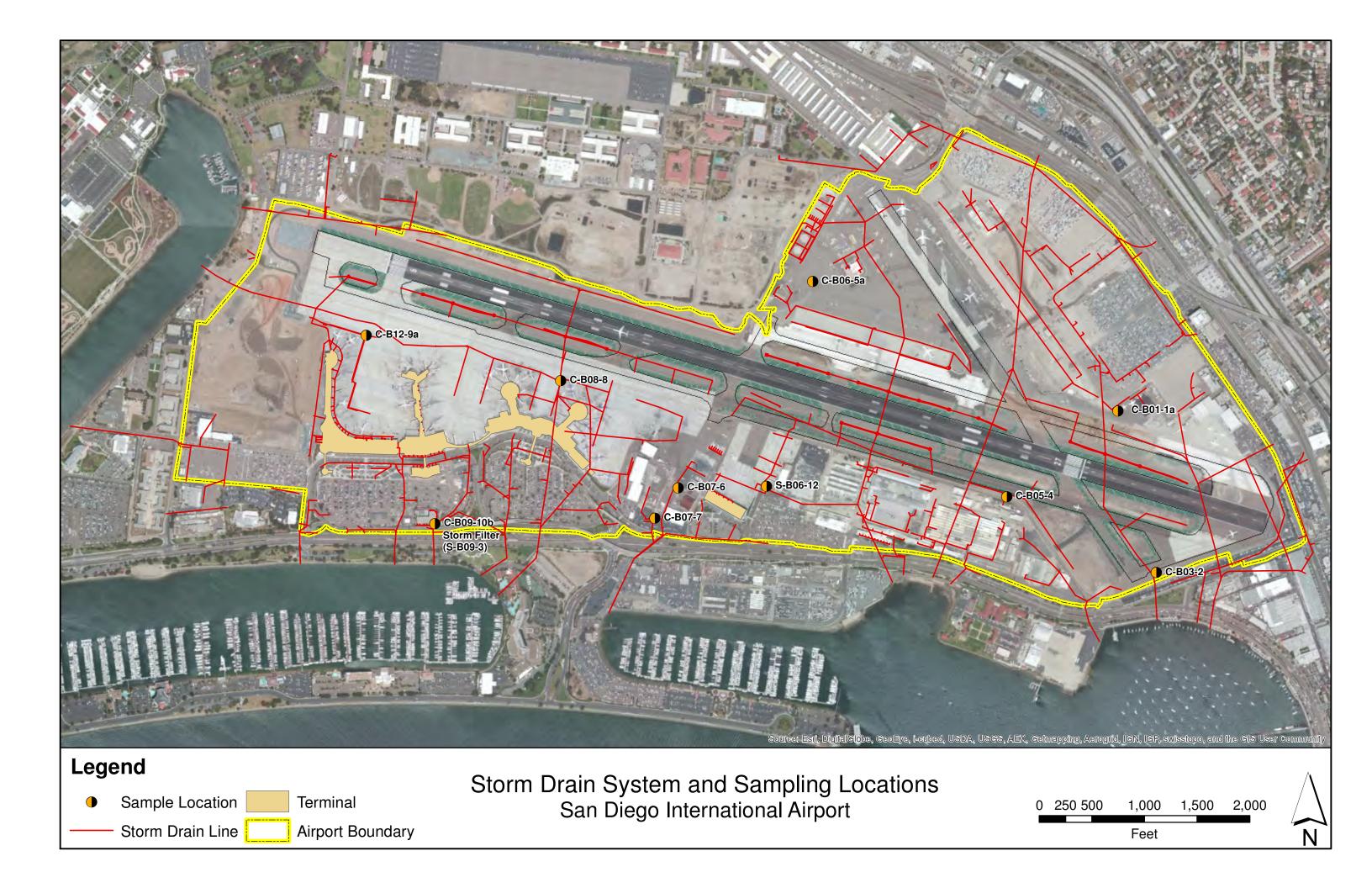
Notes:

- (a) USEPA National Pollutant Discharge Elimination System (NPDES) Storm Water Multi-Sector General Permit for Industrial Activities, 73 Federal Register (FR) 56572, Final, September 29, 2008. Values are from water quality criteria for Freshwater Aquatic life Protection and Human Health Protection (consumption of water and organisms), federal and state storm water discharge limits, and minimum levels calculated from laboratory method detection limits. For the seven metals Ag, Cd, Cr III, Cu, Ni, Pb, and Zn, values were calculated based on the assumptions of temperature 20° C, pH 7.8, and hardness as CaCO3 100 mg/L.
- (b) Drinking Water Standards, Maximum Contaminant Levels California (California Department of Health Services), California Code of Regulations (CCR), Title 22, Division 4, Chapter 15, Domestic Water Quality and Monitoring.
- (c) Numeric Criteria for Priority Toxic Pollutants for the State of California; California Toxics Rule (40CFR131.38), USEPA, 65 Federal Register (FR) 31682-31719, May 18, 2000. The Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California (Phase 1 of the Inland Surface Waters Plan and the Enclosed Bays and Estuaries Plan) was adopted by the State Water Resources Control Board on March 2, 2000, and became effective on May 18, 2000. Values are 30day Average Concentration for Human Health Protection (consumption of aquatic organisms for both Saltwater and Freshwater), unless indicated (IM) for (Instantaneous Maximum or (1H) for 1-Hour Average Maximum Concentration for Saltwater and Freshwater Aquatic Life Protection).
- (d) USEPA National Recommended Ambient Water Quality Criteria Saltwater and Freshwater Aquatic Life Protection, Recommended Ambient Water Quality Criteria, various dates. Values are Lowest Observed Effect Level (LOEL) concentrations for Acute Toxicity, unless indicated (IM) for Instantaneous Maximum Concentration or (1H) for 1-Hour Average Maximum Concentration.
- (e) Lab detection limits.
- (f) Water Quality Control Plan for Ocean Waters of California (2012 California Ocean Plan), California State Water Resources Control Board, August 19, 2013. Values are 30-day Average Concentration for Human Health Protection (consumption of aquatic organisms), unless indicated (IM) for Instantaneous Maximum Concentration for Marine Aquatic Life Protection.).
- (g) Water Quality Control Plan for the San Diego Basin (9) (September 8, 1994, with amendments effective on or before April 4, 2011).

All nine sampling sites had exceedances during each of the storm events with the exception of site C01-1a during the second storm event. Most of the sample sites are in the vicinity of the runway, taxiways, and ground service vehicle operations. The Airport Authority will continue to use collected data to evaluate the adequacy and effectiveness of the BMPs implemented near these sample sites, and to identify any needed improvements.

The 133 exceedances was comparable to the exceedances reported in previous years, the pollutants that exceeded benchmarks for stormwater samples collected during this reporting period are consistent with historic sampling data at the airport. Total and dissolved zinc and total and dissolved copper were listed as primary POCs due to relatively high exceedance frequencies in past monitoring seasons, and continued to show relatively high exceedance frequencies during the 2013-2014 season, as in previous runoff monitoring. Past analysis has suggested that tire and brake pad wear from landing aircraft and/or vehicles, as well as building roofs, may be a likely source of heavy metals. It appears that during the 2013-2014 season, ammonia, BOD, and COD showed lower exceedance frequencies, while aluminum

and iron showed higher exceedance frequencies compared to results from the 2012-2013 season. Continued monitoring will be examined to see whether this becomes a trend.


With the new MS4 permit (NPDES No. CAS0109266, Order No. R9-2013-0001) having taken effect on June 27, 2013 and the new Industrial General Permit (NPDES No. CAS000001, Order 2014-0057-DWQ) effective July 1, 2015, a transitional wet weather monitoring program is being finalized to guide future monitoring and sampling activities during the transitional period and the Authority's Storm Water Management Plan will be updated.

Along with evaluating our sampling plan and BMPs, the Airport Authority also conducts site audits every 2 years of all its tenants and their respective activities. Audits were conducted 2005, 2007, 2009, 2011 and late 2012/early 2013. The site audit results serve as a means to aid in the identification of potential pollutant sources and help to evaluate the effectiveness of the BMPs currently implemented by the tenants. These efforts are intended to outline new, additional, or modified BMPs that can be implemented to control or eliminate contaminants and to provide storm water BMP education for tenants who perform activities with the potential to impact stormwater runoff. Overall, the results of the 2007, 2009, 2011 and 2012/13 audits indicate a continued improvement in BMP implementation at San Diego International Airport. The site audits identify deficiencies in BMP implementation and provide a list of recommended changes for the Authority's Stormwater Management Program. The Authority's Storm Water Management Plan was revised in 2008 in response to the findings from the 2007 audit. More recent audits have not identified the need for further modifications to the Authority's Storm Water Management Plan.

As more storm water data is collected in the future, the increased statistical power of the dataset will be used to determine long-term adequacy and effectiveness of both the runoff monitoring program and the BMPs being implemented.

Attachment 2

Storm Drain System and Sampling Locations Map

Attachment 3

Forms

2013-2014 ANNUAL REPORT FORM 1 - SAMPLING & ANALYSIS RESULTS FIRST STORM EVENT

If analytical results are less than the detection limit (or non detectable), show the value as less than the indicate "PA" in the appropriate test method used box.

· Make additional copies of this form as necessary.

· If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

NAME OF PERSON COLLECTING SAMPLES: Anna Wernet

net TITLE: AMEC, Consultant

Z R X SIGNATURE:

	1		1					3 1						· · · · , ·		1
		TOTAL ZINC Zn _t	48	1500	7100	1100	1200	2200	250	1200	220	hg/L	0.2	EPA 200.8	LAB	
		TOTAL IRON Fe _t	0.56	4.9	1.90	1.1	3.20	2.1	0.094	3.10	0.26	hg/L	7.4	EPA 200.8	LAB	
	Other Parameters	OIL RANGE ORGANICS (C22-C36)	<0.05	0.64		<0.05	0.24	0.39	0.42	0.53	<0.05	mg/L	0.05	EPA 8015B	LAB	
JLTS ent	Other Pa	JET-A	<0.05	0.4		<0.05	<0.05	0.24	<0.05	0.26	<0.05	mg/L	0.05	EPA 8015B	LAB	Substances
ANALYTICAL RESULTS for First Storm Event		DIESEL RANGE ORGANICS (C10-C24)	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/L	0.05	EPA 8015B	LAB	MBAS - Methylene Blue Active Substances
ANALYT for Firs		MBAS	<0.05	0.480	0.280	0.140	0.270	0.430	0.130	0.320	0.140	mg/L	0.05	EPA 425.1	LAB	MBAS - Meth
		O&G	<1.4	6.9	2.00	<1.4	2.00	4	<1.4	4.30	<1.4	mg/L	1. 4.	EPA 1664	LAB	
	Basic Parameters	S	97	950	600	296	260	389	3.9	690	322	hmhos/cm	0.1	EPA 120.1	LAB	O&G - Oil and Grease
	Basic Pa	TSS	10.0	102.0	72	30	62	110.0	6	182	13.0	mg/L	1	EPA 150.1 EPA 160.2	LAB	
		Hđ	6.92	5.67	6.44	6.71	6.44	5.51	6.67	6.5	6.51	pH units	0.1	EPA 150.1	LAB	
TIME DISCHARGE STARTED			10/29/2013 2:20	10/9/2013 17:03	10/9/2013 17:03	10/9/2013 17:03	10/29/2013 2:20	10/9/2013 17:03	10/9/2013 17:03	10/9/2013 17:03	10/9/2013 17:03	TEST REPORTING UNITS:	DETECTION LIMIT:	TEST METHOD USED:	ANALYZED BY (SELF/LAB):	SC - Specific Conductance
DATE/TIME OF SAMPLE COLLECTION			10/29/2013 3:30	10/9/2013 17:35	10/9/2013 17:45	10/9/2013 17:10	10/29/2013 4:00	10/9/2013 17:03	10/9/2013 17:12	10/9/2013 17:31	10/9/2013 17:09	TESTF	TEST METHOD DETECTION LI	ΤĘ	ANALYZ	
DESCRIBE DISCHARGE LOCATION Example: NW out Fail			C-B01-1a	C-B03-2	C-B05-4	C-B06-5a	C-B07-6	C-B07-7	C-B08-8	C-B09-10b	C-B12-9a					TSS - Total Suspended Solids

Form 1 - page 1 of 10

The second se

,

2013-2014 ANNUAL REPORT FORM 1 - SAMPLING & ANALYSIS RESULTS

 When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box. - If analytical results are less than the detection limit (or non detectable), show the value as less than the numerical - Wh value of the detection limit (example: <.05) · If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

· Make additional copies of this form as necessary.

NAME OF PER	NAME OF PERSON COLLECTING SAMPLES: Anna Wernet	MPLES: Anna Wernet			TITLE: AME	TITLE: AMEC, Consultant	t	SIGNATURE:	se:	Ker	Y
DESCRIBE DISCHARGE LOCATION Example: NW out Fall	DATE/TIME OF SAMPLE COLLECTION	TIME DISCHARGE STARTED				ANALY for Fi	ANALYTICAL RESULTS for First Storm Event	SULTS Event			
						Other	Other Parameters (Cont.)	Cont.)			
			DISSOLVED ZINC Zn _d	TOTAL LEAD Pb _t	TOTAL ALUMINUM Al _t	TOTAL COPPER Cu _t	DISSOLVED COPPER Cu _d	BOD	COD	AMMONIA as N	ETHYLENE
C-B01-1a	10/29/2013 3:30	10/29/2013 2:20	32.00	<0.18	530	27.00	13	11.40	28	0.37	
C-B03-2	10/9/2013 17:35	10/9/2013 17:03	1300	290.0	4300	1700	1400	210	1100	24.5	
C-B05-4	10/9/2013 17:45	10/9/2013 17:03	5600	<0.18	1800	1900	1500	115	660	4.50	
C-B06-5a	10/9/2013 17:10	10/9/2013 17:03	330	<0.18	1000	82	58	ŝ	111	1.85	
C-B07-6	10/29/2013 4:00	10/29/2013 2:20		<0.18	970	370	200	67	289	289 4.40	
C-B07-7	10/9/2013 17:03	10/9/2013 17:03		<0.18	1800	760	560	130	130 424	12.2	
C-B08-8	10/9/2013 17:12	10/9/2013 17:03	190	190 <0.18	72	120	66	14	53	0.95	<4.7
C-B09-10b	10/9/2013 17:31	10/9/2013 17:03	920	<0.18	2500	120		196	560	5.00	
C-B12-9a	10/9/2013 17:09	10/9/2013 17:03	160	<0.18	210	49		16	31	2.40	
	TEST	TEST REPORTING UNITS:	hg/L	hg/L	hg/L	hg/L	hg/L	mg/L	mg/L	mg/L	mg/L
	TEST METHOD DETECTION	DETECTION LIMIT:	0.2	0.18	2.4	0.15	0.15	2	0.1	2.5	4.7
	TE	TEST METHOD USED:	EPA 200.8	EPA 200.8	EPA 200.8	EPA 200.8	EPA 200.8	EPA 405.1	EPA 405.1 EPA 410.4	SM 4500-NH3	EPA 8015B
	ANALY	ANALYZED BY (SELF/LAB):	LAB	LAB	LAB	LAB	LAB	LAB	LAB	LAB	LAB
			BOD - Biol	BOD - Biological Oxygen Demand	Demand		COD - Chemical Oxygen Demand	Dxygen Dema	and		

Form 1 - page 2 of 10

A second the second sec

"PA" in the					TOTAL HEXAVALENT CHROMIUM CrVI _t	<0.00027	<0.00027	<0.00027	<0.00027						mg/L	0.00027	EPA 218.6	LAB
ORM EVENT When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box.		δ			DISSOLVED HEXAVALENT HE CHROMIUM CI CrVI _d	012 <0.00027 ·									mg/L	0.00027	EPA 218.6 B	LAB
le pH meters, SC		Kar		et season)	TOTAL TRIVALENT H CHROMIUM Crilit	<0.0012	-	<0.0012	12						mg/L	0.0012	EPA 200.8	LAB
is (such as portab	sary.	E	ULTS vent	Additional Parameters (added prior to 2013-2014 wet season)	DISSOLVED TRIVALENT CHROMIUM CHII _d	<0.0012 <0.0	3.1 8	<0.0012	4.8						mg/L	0.0012	EPA 200.8	LAB
portable analysi oox.	form as neces	SIGNATURE	ANALYTICAL RESULTS for First Storm Event	ded prior to	TOTAL CADMIUM Cd _t	<0.18		<0.18	<0.18	2					mg/L	0.18	EPA 200.8	LAB
ORM EVENT • When analysis is done using port appropriate test method used box.	 Make additional copies of this form as necessary. 	_	ANALYT for Firs	ameters (ad	DISSOLVED CADMIUM Cd _d	<0.18	<0.18	<0.18	<0.18						hg/L	0.18	EPA 200.8	LAB
HRST STORM EVEN he • When analysis appropriate test	 Make additior 	TITLE: AMEC, Consultant		ditional Par	TOTAL ARSENIC As _t	<0.61	<0.61	<0.61	<0.61						hg/L	0.61	EPA 200.8	LAB
HISI SI an the	ox blank	Title: Ame		Ad	DISSOLVED ARSENIC As _d	<0.61	<0.61	<0.61	<0.61						µg/L	0.61	EPA 200.8	LAB
FII lue as less than the	appropriate box blank				TOTAL SILVER Ag _t	<0.14	<0.14	<0.14	<0.14						hg/L	0.14	EPA 200.8	LAB
e), show the va	stead, leave the				DISSOLVED SILVER Ag _d	<0.14	<0.14	<0.14	<0.14						hg/L	0.14	EPA 200.8	LAB
n limit (or non detectabl s: <.05)	er, do not report "0". Ins	PLES: Anna Wernet	TIME DISCHARGE STARTED			10/29/2013 2:20	10/9/2013 17:03	10/9/2013 17:03	10/9/2013 17:03	10/29/2013 2:20	10/9/2013 17:03	10/9/2013 17:03	10/9/2013 17:03	10/9/2013 17:03	TEST REPORTING UNITS:	ETECTION LIMIT:	TEST METHOD USED:	ANALYZED BY (SELF/LAB):
 If analytical results are less than the detection limit (or non detectable), show the valu numerical value of the detection limit (example: <.05) 	· If you did not analyze for a required parameter, do not report "0". Instead, leave the	NAME OF PERSON COLLECTING SAMPLES: Anna Wernet	DATE/TIME OF SAMPLE COLLECTION			10/29/2013 3:30	10/9/2013 17:35	10/9/2013 17:45	10/9/2013 17:10	10/29/2013 4:00	10/9/2013 17:03	10/9/2013 17:12	10/9/2013 17:31	10/9/2013 17:09	TEST REI	TEST METHOD DETECTION LIMIT:	TEST	ANALYZED
 If analytical results al numerical value of the 	 If you did not analyze 	NAME OF PERSON	DESCRIBE DISCHARGE LOCATION Example: NW Out Fall			C-B01-1a	C-B03-2	C-B05-4	C-B06-5a	C-B07-6	C-B07-7	C-B08-8	C-B09-10b	C-B12-9a		•		

Form 1 - page 3 of 10

1000

2013-2014 ANNUAL REPORT FORM 1 - SAMPLING & ANALYSIS RESULTS FIRST STORM EVENT 2013-2014 ANNUAL REPORT FORM 1 - SAMPLING & ANALYSIS RESULTS <u>FIRST STORM EVENT</u>

• When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box. - If analytical results are less than the detection limit (or non detectable), show the value as less than the numerical value of the detection limit (example: <.05)

• If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

· Make additional copies of this form as necessary.

NAME OF PERSON COLLECTING SAMPLES: Anna Wernet

TITLE: AMEC, Consultant

SIGNATURE: GALOL

DATE/TIME OF SAMPLE COLLECTION	MIT	TIME DISCHARGE STARTED				4	ANALYTICAL RESULTS for First Storm Event	AL RESUL torm Eve	_TS nt			
					Addition	al Parameter	Additional Parameters (added prior to 2013-2014 wet season) (Cont.)	or to 2013-2	2014 wet se	ason) (Cont.		
		<u></u>	DISSOLVED CHROMIUM Cr _d	TOTAL CHROMIUM Cr _t	DISSOLVED MERCURY Hg _d	TOTAL MERCURY Hg _t	DI\$SOLVED NICKEL Ni _d	TOTAL NICKEL Ni _t	DISSOLVED LEAD Pb _d	TOTAL FECAL COLIFORM COLIFORM	FECAL COLIFORM	ENTEROCOCCUS
10/29/2013 3:30		10/29/2013 2:20	<0.26	<0.26	<0.15	<0.02	<0.46	<0.46	<0.18			
10/9/2013 17:35		10/9/2013 17:03	3.1	8.0	<0.15	<0.02	44	77	140			
10/9/2013 17:45		10/9/2013 17:03	<0.26	<0.26	<0.15	<0.02	38	48.0	<0.18			
10/9/2013 17:10		10/9/2013 17:03	4.8	12	<0.15	15 <0.02	<0.46	<0.46	<0.18			
10/29/2013 4:00	3 1	10/29/2013 2:20										
10/9/2013 17:03		10/9/2013 17:03										
10/9/2013 17:12	× ×	10/9/2013 17:03								270	40 110	110
10/9/2013 17:31		10/9/2013 17:03					60000			60000	2400	2000
10/9/2013 17:09		10/9/2013 17:03										
TEST RI	-	TEST REPORTING UNITS:	hg/L	hg/L	р9/С	hg/L	hg/L	hg/L	hg/L	CFU/100ml CFU/100ml	CFU/100ml	CFU/100ml
IETHOD [TEST METHOD DETECTION LIMIT:	0.26	0.26	0.15	0.02	0.46	0.46	0.18	10/100	+	F
TES	(n	TEST METHOD USED:	EPA 200.8	EPA 200.8	EPA 245.1	EPA 245.1	EPA 200.8	EPA 200.8	EPA 200.8	SM 9222B	SM 9222D	SM 9230C
ANALYZE		ANALYZED BY (SELF/LAB):	LAB	LAB	LAB	LAB	LAB	LAB	LAB	LAB	LAB	LAB
	ŧ.											

Form 1 - page 4 of 10

The second second

(example: c. cl) (events) (allocation and parameter of on on operative in a propried and monoid operative in a propried and and and and and and and and and an	More than the request of not report. Title: Amer, ex, indicate the monosony. SON COLLECTING SAMPLES: Amar Warner Title: Amer, ex, indicate with the appropries est memorane. INTELIMINE OF SAMPLE Title: Amer, and the appropriate statement of the first statement of the first statement of the and monosony. INTELIMINE OF SAMPLE Discriticity SIGNUTINE. INTELIMINE OF SAMPLE Title: Amer, and the appropriate statement of the first statement of the first statement of the and monosony. INTELIMINE OF SAMPLE Discriticity SIGNUTIDE International Parameters (added prior to 2013-2014 with season) (Contr.) INTERNIC OF SAMPLE Discriticity SIGNUTIDE International Parameters (added prior to 2013-2014 with season) (Contr.) INTERNIC OF SAMPLE Discriticity SIGNUTIDE International Parameters (added prior to 2013-2014 with season) (Contr.) INTERNIC OF SAMPLE Discriticity SIGNUTIDE International Parameters (added prior to 2013-2014 with season) (Contr.) INTERNIC OF SAMPLE Discriticity SIGNUTIDE International Parameters (added prior to 2013-2014 of the season) (Contr.) INTERNIC OF SAMPLE Discriticity SIGNUTIDE International Parameters (added prior to 2013-2014 of the season) (Contr.) INTERNIC OF SAMPLE Discriticity Discriticity Discriticity INTERNIC OF SAMPLE Discriticity Discriticity Discriticity INTERNIC OF SAMPLE Discriticity Dis	· If analytical resu	ilts are less than the de	etection limit (or non dete	2013-2014 ANNUAL REPORT FORM 1 - SAMPLING & ANALYSIS RESU FIRST STORM EVENT If analytical results are less than the detection limit (or non detectable), show the value as less than the numerical value of the detection limit	2013-2014 ANNUAL REPORT FORM 1 - SAMPLING & ANALYSIS RESULTS FIRST STORM EVENT a as less than the numerical value of the detection limit		. When analysis is done using portable analysis (such as portable pH meters, SC
SON COLLECTING SAWPLES: And Wentet TITLE: AMEC, Consultant SIGMATURE: Consultant: Consultant Consultant SIGMATURE: Consultant: Consultant: Consultant	Son collecting swirtles: Ama Wende TITLE: AMEC, Consultant SigNUTURE DATETIME OF SAMPLE TIME TIME: Ama Wende DATETIME OF SAMPLE TIME MAILYTICAL RESULTS DATETIME OF SAMPLE DISCHARGE DISCHARGE DATETIME OF SAMPLE TIME AnallyTiCAL RESULTS COLLECTION STARTED Additional Parameters (added prior to 2013-2014 wet season) (cont.) COLLECTION POLYCHLORINATED BIPHENVIS POLYCHLORINATED BIPHENVIS	(example: <.05) - If you did not ar	alyze for a required pa	arameter, do not report "C	0". Instead, leave the appropriate box blank		meters, etc.), indicate "P · Make additional copies	A" in the appropriate test method used box. of this form as necessary.
Data Building Same Collection Time Same Same Same Same Same Same Same Sa	DATE/TIME of SAMMEL TIME SAMMEL ANALYTICAL RESULTS SAMMEL STARTED ANALYTICAL RESULTS SAMMEL STARTED STARTED COLLECTION STARTED Anditional Parameters (added prior to 2013-2014 wet season) (cont.) POLYCHLORINATED BIPHENULS POLYCYCLIC AROMATIC ORGANOCHLORINE TOTAL PORSONI 17:00 PORSONI 17:00 ORGANOCHLORINE TOTAL PORSONI 17:01 PORSONI 17:00 <	NAME OF PEF	SON COLLECTING	à SAMPLES: Anna W		ITLE: AMEC, Consultant	SIGNATURE:	rear
Additional Parameters (added prior to 2013-2014 wet season) (Cont.) POLYCHLORINATED BIPHENVLS POLYCHLORINATED BIPHENVLS POLYCHLORINATED BIPHENVLS (PCB8) MCDROCARBONS (PHIs) PESTICIDES HARDNESS (PCB3) (PCB3) MCDROCARBONS (PHIs) PESTICIDES HARDNESS (PO2001317:05 10/29/2013 12:03 10/29/2013 12:03 -0.04 -0.00119-0.042 -0.002-0.5 26.6 (P02013 17:03 10/29/2013 7:03 -0.4 -0.00119-0.042 -0.002-0.5 343 (P02013 17:03 10/29/2013 7:03 -0.4 -0.00119-0.042 -0.002-0.5 343 (P02013 17:03 10/29/2013 7:03 -0.4 -0.00119-0.042 -0.002-0.5 343 (P02013 17:03 10/29/2013 7:03 -0.4 -0.002-0.5 343 -0.00 (P02013 17:03 10/29/2013 7:03 -0.4 -0.002-0.5 343 -0.002-0.5 343 (P02013 17:03 10/29/2013 7:03 -0.4 -0.002-0.5 343 -0.002-0.5 343 (P02013 17:03 10/9/2013 17:03 -0.4 -0.002-0.5 3	Additional Parameters (added prior to 2013-2014 wet season) (Cont.) Additional Parameters (added prior to 2013-2014 wet season) (Cont.) POLYCHLORINATED BIPHENVLS POLYCYCLIC AROUATIC ORGANOCHLORINE IATBNESS POLSO POLSO POLSO POLSO POLSO POLSO POLSO<	DESCRIBE DISCHARGE LOCATION Example: NW Out Fall		TIME DISCHARGE STARTED		ANAL YTIC for First	CAL RESULTS Storm Event	
PolyCellORINATED BIPHENVLS POLYCCLIC AROMATIC ORGANOCCHLORINA TOTAL POLYCHLORINATED BIPHENVLS POLYCHLORINATED BIPHENVLS POLYCHLORINA TOTAL POLS POLS PADIUES PADIUES POLS POLS PADIUS PADIUS POLS POLS POLS PADIUES POLS POLS POLS POLS 10/22013 17:35 10/22013 17:03 POLS -0.04 -0.001190.0942 -0.002-0.5 343 10/22013 17:36 10/22013 17:03 POLS -0.04 -0.001190.0942 -0.002-0.5 66.0 10/22013 17:31 10/22013 17:03 POLS -0.04 -0.04 -0.02 -0.02 343 10/22013 17:32 10/22013 17:03 POLS -0.02 -0.02 343 -0.02 10/22013 17:04 10/22013 17:03 10/22013 17:03 -0.04 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02<	Pol. VCHLORINATED BIPHENVLS POLYCYCLIC AROMATIC ORGANOCHLORINE TOTAL PCBSD PCBSD PCBSD PCBSD PCBSD 10/29/2013 10/29/2013 10/29/2013 26.6 ADDDD 26.6 10/29/2013 10/29/2013 10/29/2013 20.0 -0.14 -0.002-0.5 26.6 10/29/2013 10/29/2013 20.0 -0.04 -0.00119-0.0942 -0.002-0.5 26.6 10/9/2013 17.50 10/9/2013 10/29/2013 26.6 -0.0 10/9/2013 10/9 10/9/2013 17.51 10/9/2013 17.00 -0.04 -0.00119-0.0942 -0.002-0.5 68.0 10/9/2013 17.51 10/9/2013 17.00 -0.04 -0.002-0.5 68.0 -0.0 10/9/2013 17.50 10/9/2013 17.61 19/9 19/9 19/9 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0<				Addition	nal Parameters (added p	rior to 2013-2014 we	t season) (Cont.)
Program Program <t< td=""><td>Integration Integration Integration</td><td></td><td></td><td></td><td></td><td>OLYCYCLIC AROMATIC VDROCARBONS (PAHS)</td><td>ORGANOCHLORINE PESTICIDES</td><td>TOTAL HABDNESS</td></t<>	Integration					OLYCYCLIC AROMATIC VDROCARBONS (PAHS)	ORGANOCHLORINE PESTICIDES	TOTAL HABDNESS
10/29/2013 3:30 10/29/2013 2:20 -0.4 -0.00119-0.0942 -0.002-0.5 26.6 10/9/2013 17:35 10/9/2013 17:03 -0.4 -0.00119-0.0942 -0.002-0.5 343 10/9/2013 17:36 10/9/2013 17:03 -0.4 -0.00119-0.0942 -0.002-0.5 66.0 10/9/2013 17:31 10/9/2013 17:03 -0.4 -0.00119-0.0942 -0.002-0.5 68.0 10/9/2013 17:31 10/9/2013 17:03 -0.4 -0.00119-0.0942 -0.022-0.5 68.0 10/9/2013 17:31 10/9/2013 17:03 -0.4 -0.0119-0.0942 -0.02-0.5 68.0 10/9/2013 17:04 10/9/2013 17:03 -0.4 -0.0119-0.0942 -0.02-0.5 68.0 10/9/2013 17:04 10/9/2013 17:03 -0.4 -0.4 -1/27 1/27 10/9/2013 17:03 10/9/2013 17:03 -0.4 -1/27 1/27 10/9/2013 17:04 10/9/2013 17:03 -0.4 1/27 1/27 10/9/2013 17:05 10/9/2013 17:03 -0.9 -0.4 1/27 10/9/2013 17:06 10/9/2013 17:03 -0.	10/29/2013 3::30 10/29/2013 2::20 -0.4 -0.00119-0.0942 -0.002-0.5 28.6 10/9/2013 17:35 10/9/2013 17:33 0.09/2013 17:33 -0.4 -0.00119-0.0942 -0.002-0.5 343 10/9/2013 17:36 10/9/2013 17:33 -0.4 -0.00119-0.0942 -0.002-0.5 840 10/9/2013 17:30 -0.4 -0.00119-0.0942 -0.002-0.5 840 10/9/2013 17:30 -0.4 -0.00119-0.0942 -0.002-0.5 840 10/9/2013 17:03 -0.4 -0.0119-0.0942 -0.002-0.5 840 10/9/2013 17:03 -0.4 -0.0119-0.0942 -0.022-0.5 840 10/9/2013 17:03 -0.4 -0.0119-0.0942 -0.002-0.5 840 10/9/2013 17:03 -0.4 -0.0119-0.0942 -0.002-0.5 97.0 10/9/2013 17:03 -0.4 -0.1 127 127 10/9/2013 17:03 -0.94 -0.4 -0.0119-0.0942 0.002-0.5 0.4 10/9/2013 17:03 10/9/2013 17:03 -0.4 -0.1 127 127 1				, -1232, -1242, -1248, -			
1092013 17:35 1092013 17:03 -0.4 -0.00119-0.0942 343 1092013 17:45 1092013 17:03 -0.4 -0.00119-0.0942 196 1092013 17:10 1092013 17:03 -0.4 -0.00119-0.0942 0.002-0.5 60.0 1092013 17:11 1092013 17:03 -0.4 -0.00119-0.0942 0.002-0.5 60.0 1092013 17:03 1092013 17:03 -0.4 -0.002-0.5 60.0 1092013 17:03 1092013 17:03 -0.4 -0.002-0.5 60.0 1092013 17:03 1092013 17:03 -0.4 -0.002-0.5 60.0 1092013 17:03 1092013 17:03 -0.4 -0.002-0.5 60.0 1092013 17:03 1092013 17:03 -0.4 -0.0 97.0 1092013 17:03 1092013 17:03 -0.4 -0.0 127 1092013 17:04 1092013 17:03 -0.4 127 127 1092013 17:05 1092013 17:03 -0.4 127 127 1092013 17:04 1092013 17:03 -0.4 127 127 1092013 17:05 1092013 17:03 -0.4 127 127 1092013 17:05 1092013 17:03 -0.4 0.0 127 1092013 17:05 1092013 17:03 0.4 127	1092013 17:35 1092013 17:03 -0.4 -0.00119-0.042 -0.002-0.5 543 1092013 17:45 1092013 17:03 -0.4 -0.00119-0.042 -0.002-0.5 640 1092013 17:04 1092013 17:03 -0.4 -0.00119-0.042 -0.002-0.5 680 1092013 17:03 1092013 17:03 -0.4 -0.00119-0.042 -0.002-0.5 680 1092013 17:03 1092013 17:03 -0.4 -0.00119-0.042 -0.002-0.5 680 1092013 17:03 -0.4 -0.4 -0.00119-0.042 -0.002-0.5 680 1092013 17:03 -0.4 -0.4 -0.002-0.5 680 -0.001 1092013 17:04 1092013 17:03 -0.4 -0.002-0.5 680 -0.002 1092013 17:04 1092013 17:04 -0.4 -0.002-0.5 680 -0.002 1092013 17:04 1092013 17:04 -0.4 -0.002-0.5 680 -0.002 1092013 17:04 1092013 17:04 -0.4 -0.002-0.5 680 -0.002 1092013 17:04 1092013 17:04	C-B01-1a	10/29/2013 3:30	10/29/2013 2:20	Ϋ́.	<0.00119-0.0942	<0.002-0.5	26.6
1092013 17:46 1092013 17:03 19 1092013 17:10 10922013 17:03 -0.4 -0.002-0.5 60.0 1092013 17:10 10922013 17:03 -0.4 -0.002-0.5 60.0 1092013 17:03 1092013 17:03 -0.4 -0.002-0.5 60.0 1092013 17:03 0.92013 17:03 -0.4 -0.002-0.5 60.0 1092013 17:03 0.92013 17:03 -0.4 -0.002-0.5 60.0 1092013 17:03 1092013 17:03 -0.4 -0.1 127 1092013 17:03 1092013 17:03 -0.4 -127 127 1092013 17:03 1092013 17:03 -0.4 -127 127 1092013 17:03 1092013 17:03 -0.4 127 127 1092013 17:03 1092013 17:03 -0.4 127 127 1092013 17:03 -0.94 -0.4 127 183 1092013 17:03 1092013 17:03 -0.4 167 183 1092013 17:03 1092013 17:03 -0.4 167 167 11092013 17:04 1092013 17:04 0.4 0.01 167	1092013 17:45 1092013 17:03 156 10922013 17:10 10922013 17:03 -0.4 -0.00119-0.0942 -0.002-0.5 60.0 10922013 17:10 10922013 17:03 -0.4 -0.00119-0.0942 -0.002-0.5 60.0 10922013 17:03 -0.4 -0.4 -0.00119-0.0942 -0.002-0.5 60.0 10922013 17:03 -0.4 -0.4 -0.00119-0.0942 -0.002-0.5 60.0 10922013 17:03 -0.4 -0.4 -0.00119-0.0942 -0.002-0.5 60.0 10922013 17:03 -0.4 -0.4 -0.4 -0.4 -0.1 127 10922013 17:03 -0.4 -0.4 -0.4 -0.4 127 10922013 17:03 -0.4 -0.4 -0.4 127 10922013 17:03 -0.4 -0.4 127 127 10922013 17:03 -0.4 -0.4 127 110 10922013 17:03 -0.92 -0.4 -0.1 110 1107 -0.4 -0.4 -0.6 100	C-B03-2	10/9/2013 17:35	10/9/2013 17:03	<0.4	0119-0.09	<0.002-0.5	343
1092013 17:10 1092013 17:03 -0.4 -0.00119.0.042 -0.002-0.5 60.0 10292013 17:03 10292013 27:03 -0.4 -0.002-0.5 60.0 10922013 17:03 10922013 17:03 -0.4 97.0 97.0 10922013 17:12 10922013 17:03 -0.4 97.0 97.0 10922013 17:13 10922013 17:03 -0.4 127 127 10922013 17:13 10922013 17:03 -0.4 127 127 10922013 17:03 0.922013 17:03 -0.4 127 127 10922013 17:03 10922013 17:03 -0.04 127 127 10922013 17:03 10922013 17:03 -0.04 127 127 10922013 17:03 0.922013 17:03 -0.04 127 127 10922013 17:03 10922013 17:03 -0.04 148 161 110922013 17:04 10922013 17:04 0.04 107 161 110922013 17:03 0.0419-0.0942 0.02-0.5 0.4 161 111111111111111111111111111111111111	1092013 17:10 10922013 17:33 -0.4 -0.00119-0.0942 -0.002-0.5 60.0 10292013 17:03 102292013 22:00 -0.4 -0.00119-0.0942 -0.002-0.5 68.0 1092013 17:03 1092013 17:03 -0.4 97.0 97.0 1092013 17:03 1092013 17:03 -0.4 97.0 97.0 1092013 17:03 1092013 17:03 -0.4 127 127 1092013 17:03 1092013 17:03 -0.4 127 133 1092013 17:03 1092013 17:03 -0.4 127 133 1092013 17:03 1092013 17:03 -0.4 127 133 1092013 17:03 1092013 17:03 -0.4 133 133 1092013 17:03 1092013 17:03 -0.4 133 133 1092013 17:03 1092013 17:03 -0.4 133 130 11092013 17:03 1092013 17:03 -0.4 130 140 1110 110 1001 1001 100 140 1111 110 <td< td=""><td>C-B05-4</td><td>10/9/2013 17:45</td><td>10/9/2013 17:03</td><td></td><td></td><td></td><td>196</td></td<>	C-B05-4	10/9/2013 17:45	10/9/2013 17:03				196
10/29/2013 4:00 10/29/2013 2:20 -0.4 68.0 10/9/2013 17:03 10/9/2013 17:03 -0.4 97.0 10/9/2013 17:03 10/9/2013 17:03 -0.4 127 10/9/2013 17:03 10/9/2013 17:03 -0.4 127 10/9/2013 17:03 10/9/2013 17:03 -0.4 127 10/9/2013 17:04 10/9/2013 17:03 -0.4 170 10/9/2013 17:03 -0.4 170 183 10/9/2013 17:04 0.9 -0.4 170 10/9/2013 17:04 0.9 -0.4 170 10/9/2013 17:04 0.9 -0.4 170 10/9/2013 17:04 0.9 -0.4 170 10/9/2013 17:04 0.0 -0.4 170 TEST REPORTING UNITS 0.4 0.00119-0.0942 0.02-0.5 0.4 TEST METHOD USED EPA 608 EPA 608 SM 2340 C ANALYZED BY (SELF/LAB): LAB LAB LAB LAB LAB LAB	10292013 4:00 10292013 2:20 -0.4 68.0 68.	C-B06-5a	10/9/2013 17:10	10/9/2013 17:03	·	<0.00119-0.09	<0.002-0.5	60.0
109/2013 17:03 109/2013 17:03 97.0 10/9/2013 17:03 10/9/2013 17:03 97.0 127 10/9/2013 17:12 10/9/2013 17:03 127 10/9/2013 17:09 10/9/2013 17:03 183 10/9/2013 17:09 10/9/2013 17:03 183 10/9/2013 17:09 10/9/2013 17:03 183 10/9/2013 17:09 10/9/2013 17:03 183 10/9/2013 17:09 10/9/2013 17:03 197 183 TEST REPORTING UNITS 197 10 TEST METHOD DETECTION LIMIT 0.4 0.002-0.5 0.4 TEST METHOD USED <td>109/2013 17:03 109/2013 17:03 -0.4 97.0 109/2013 17:12 109/2013 17:03 -0.4 127 109/2013 17:12 109/2013 17:03 -0.4 127 109/2013 17:04 109/2013 17:03 -0.4 127 109/2013 17:05 109/2013 17:03 -0.4 123 109/2013 17:04 109/2013 17:03 -0.4 183 109/2013 17:05 109/2013 17:03 -0.4 183 109/2013 17:04 109/2013 17:03 -0.4 183 109/2013 17:05 0.9/2013 17:03 -0.4 183 109/2013 17:03 0.9/2013 17:03 -0.4 180/L 110 -0.9/2013 17:03 -0.4 180/L 183 110 -0.9/2013 17:03 -0.4 -0.4 183 112 -0.9/2013 17:03 -0.4 -0.4 10 112 -0.9/2013 17:03 -0.4 -0.0 -0.4 -0.4 112 -0.9/2013 17:03 0.4 -0.4 -0.002-0.5 0.4 EST METHOD USED<td>C-B07-6</td><td>10/29/2013 4:00</td><td>10/29/2013 2:20</td><td><0.4</td><td></td><td></td><td>68.0</td></td>	109/2013 17:03 109/2013 17:03 -0.4 97.0 109/2013 17:12 109/2013 17:03 -0.4 127 109/2013 17:12 109/2013 17:03 -0.4 127 109/2013 17:04 109/2013 17:03 -0.4 127 109/2013 17:05 109/2013 17:03 -0.4 123 109/2013 17:04 109/2013 17:03 -0.4 183 109/2013 17:05 109/2013 17:03 -0.4 183 109/2013 17:04 109/2013 17:03 -0.4 183 109/2013 17:05 0.9/2013 17:03 -0.4 183 109/2013 17:03 0.9/2013 17:03 -0.4 180/L 110 -0.9/2013 17:03 -0.4 180/L 183 110 -0.9/2013 17:03 -0.4 -0.4 183 112 -0.9/2013 17:03 -0.4 -0.4 10 112 -0.9/2013 17:03 -0.4 -0.0 -0.4 -0.4 112 -0.9/2013 17:03 0.4 -0.4 -0.002-0.5 0.4 EST METHOD USED <td>C-B07-6</td> <td>10/29/2013 4:00</td> <td>10/29/2013 2:20</td> <td><0.4</td> <td></td> <td></td> <td>68.0</td>	C-B07-6	10/29/2013 4:00	10/29/2013 2:20	<0.4			68.0
109/2013 17:12 109/2013 17:03 -0.4 127 109/2013 17:31 109/2013 17:03 -0.4 183 109/2013 17:32 -0.9/2013 17:03 -0.4 183 109/2013 17:09 109/2013 17:03 -0.4 183 109/2013 17:09 109/2013 17:03 -0.4 183 109/2013 17:03 0.9/2013 17:03 -0.4 183 TEST REPORTING UNITS μg/L μg/L μg/L mg/L EST METHOD DETECTION LIMIT: 0.4 0.00119-0.0942 0.002-0.5 0.4 TEST METHOD USED: EPA 608 EPA 808 EPA 808 SM 2340 C ANALYZED BY (SELF/LAB): LAB LAB LAB LAB LAB	109/2013 17:12 109/2013 17:03 -0.4 127 10/9/2013 17:03 -0.4 183 10/9/2013 17:03 -0.4 183 10/9/2013 17:03 -0.4 183 10/9/2013 17:04 10/9/2013 17:03 -0.4 10/9/2013 17:03 -0.4 183 10/9/2013 17:03 -0.4 183 10/9/2013 17:03 -0.4 183 10/9/2013 17:03 -0.4 183 110 -0.4 -0.4 111 -0.9 -0.4 112 -0.9 -0.4 117:03 -0.4 -0.4 117:04 -0.4 -0.0 118 -0.9 -0.4 119	C-B07-7	8 3	10/9/2013 17:03	4			97.0
C-B09-10b 109/2013 17:33 -0.4 183 C-B12-9a 10/9/2013 17:03 -0.4 13 C-B12-9a 10/9/2013 17:03 -0.4 10 C-B12-9a 10/9/2013 17:03 -0.4 10 C-B12-9a 10/9/2013 17:03 -0.4 10 C-B12-9a 10/9/2013 17:03 0/1 -0.4 C-B12-9a 10/9/2013 17:03 0/1 mg/L TEST REPORTING UNITS 0.4 0.00119-0.0942 0.002-0.5 0.4 TEST METHOD DETECTION LIMIT 0.4 0.00119-0.0942 0.002-0.5 0.4 TEST METHOD USED: EPA 608 EPA 8310 EPA 608 SM 2340 C ANALYZED BY (SELF/LAB): LAB LAB LAB LAB	C-B09-10b 10/9/2013 17:33 -0.4 183 C-B12-9a 10/9/2013 17:03 -0.4 183 C-B12-9a 10/9/2013 17:09 10/9/2013 17:03 -0.4 10 TEST METHOD DETECTION LIMIT 0.4 0.00119-0.0942 0.002-0.5 0.4 TEST METHOD DETECTION LIMIT 0.4 0.00119-0.0942 0.002-0.5 0.4 ANALYZED BY (SELF/LAB): EPA 608 EPA 803 EPA 803 SM 2340 C PAHS (Acmaphthene, Anthracene, Benzo (a) pytene; Benzo (a) pytene; Benzo (b) fluoranthene; Benzo (b) fluoranthene; Benzo (b) fluoranthene; Benzo (b) fluoranthene; Chrysene; Dibenzo(a,h)anthracene; Fluoranthene; Fluo	C-B08-8	81	10/9/2013 17:03	<0.4			127
C-B12-94 10/9/2013 17:03 <0.4 110 TEST REPORTING UNITS: μg/L μg/L μg/L mg/L TEST METHOD DETECTION LIMIT: 0.4 0.00119-0.0942 0.002-0.5 0.4 TEST METHOD DETECTION LIMIT: 0.4 0.00119-0.0942 0.002-0.5 0.4 ANALYZED BY (SELF/LAB): LAB LAB LAB LAB LAB	C-B12-9a 10/9/2013 17:03 <0.4 110 TEST REPORTING UNITS: μg/L μg/L mg/L mg/L TEST METHOD DETECTION LIMIT: 0.4 0.00119-0.0942 0.002-0.5 0.4 TEST METHOD DETECTION LIMIT: 0.4 0.00119-0.0942 0.002-0.5 0.4 AnALYZED BY (SELF/LAB): LAB	C-B09-10b	10/9/2013 17:31	10/9/2013 17:03	<0.4			183
TEST REPORTING UNITS: μg/L μg/L μg/L mg/L TEST METHOD DETECTION LIMIT: 0.4 0.00119-0.0942 0.002-0.5 0.4 TEST METHOD USED: EPA 608 EPA 8310 EPA 608 SM 2340 C ANALYZED BY (SELF/LAB): LAB LAB LAB LAB LAB	TEST REPORTING UNITS: μg/L μg/L μg/L mg/L TEST METHOD DETECTION LIMIT: 0.4 0.00119-0.0942 0.002-0.5 0.4 TEST METHOD USED: EPA 608 EPA 8310 EPA 608 SM 2340 C ANALYZED BY (SELF/LAB): LAB LAB LAB LAB LAB PAHS (Acomphtthene, Acomphtitylene; Anthracene; Benzo (a) pyrene; Benzo (b) fluoranthene; Chrysene; Dibenzo(a,h)anthracene; Fluoranthene; Fluoranthene; Fluoranthene; Fluoranthene; Elenzo (b) fluoranthene; Benzo (b) fluoranthene; Benzo (b) fluoranthene; Chrysene; Dibenzo(a,h)anthracene; Fluoranthene; Fluoranthene; Fluoranthene; Elenzo (b) fluoranthene; Benzo (b) fluoranthene; Chrysene; Dibenzo(a,h)anthracene; Fluoranthene; Fluoranthene; Elenzo (b) fluoranthene; Benzo (b) fluoranthene; Chrysene; Dibenzo(a,h)anthracene; Fluoranthene; Fluoranthene;	C-B12-9a	10/9/2013 17:09	10/9/2013 17:03	<0.4			110
TEST METHOD DETECTION LIMIT: 0.4 0.00119-0.0942 0.002-0.5 0.4 TEST METHOD USED: EPA 608 EPA 608 EPA 8310 EPA 608 SM 2340 C ANALYZED BY (SELF/LAB): LAB LAB LAB LAB LAB LAB	TEST METHOD DETECTION LIMIT: 0.4 0.00119-0.0942 0.002-0.5 0.4 TEST METHOD USED: EPA 608 EPA 608 SM 2340 C ANALYZED BY (SELF/LAB): LAB LAB LAB LAB		TEST RE	PORTING UNITS	hg/L	T/6rt	hg/L	mg/L
TEST METHOD USED: EPA 608 EPA 8310 EPA 608 SM 2340 C ANALYZED BY (SELF/LAB): LAB LAB LAB LAB	TEST METHOD USED: EPA 608 EPA 608 SM 2340 C ANALYZED BY (SELF/LAB): LAB LAB LAB LAB PAHs (Acenaphthene, Acenaphthylene; Anthracene; Benzo (a) anthracene; Benzo (b) fluoranthene; Benzo (g, h,i) perviene; Benzo (g, h,i) perviene; Benzo (k) fluoranthene; Chrysene; Dibenzo(a, h)anthracene; Fluoranthene; Fluoranthene; Fluoranthene; Fluoranthene; Fluoranthene; Fluoranthene; Fluoranthene; Benzo (b) fluoranthene; Benzo (g, h,i) perviene; Benzo (k) fluoranthene; Dibenzo(a, h)anthracene; Fluoranthene; Fluoranthene; Benzo (g, h,i) perviene; Benzo (k) fluoranthene; Dibenzo(a, h)anthracene; Fluoranthene; Fluoranthene; Fluoranthene; Fluoranthene; Fluoranthene; Fluoranthene; Fluoranthene; Benzo (b) fluoranthene; Benzo (g, h,i) perviene; Benzo (k) fluoranthene; Dibenzo(a, h)anthracene; Fluoranthene; Fluoranthene; Benzo (g, h,i) perviene; Benzo (k) fluoranthene; Dibenzo(a, h)anthracene; Fluoranthene; Fluoranthene; Fluoranthene; Benzo (k) fluoranthene; Chrysene; Dibenzo(a, h)anthracene; Fluoranthene; Fluoranthene; Benzo (k) fluoranthene; Chrysene; Dibenzo(a, h)anthracene; Fluoranthene;		TEST METHOD D	DETECTION LIMIT:		0.00119-0.0942	0.002-0.5	0.4
ANALYZED BY (SELF/LAB): LAB LAB LAB LAB LAB	ANALYZED BY (SELF/LAB): LAB TARA Anthracene; Benzo (a) pyrene; Benzo (b) fluoranthene; Benzo (g,h,l) perviene; Benzo (k) fluoranthene; Chrysene; Dibenzo(a,h)anthracene; Fluoranthene; Fluoranthene; Fluoranthene; Fluoranthene; Fluoranthene; Fluoranthene; Para (a) and Prene (b) fluoranthene; Benzo (g,h,l) perviene; Benzo (k) fluoranthene; Chrysene; Dibenzo(a,h)anthracene; Fluoranthene; Fluoranthene; Para (a) and Prene (b) fluoranthene; Benzo (g,h,l) perviene; Benzo (k) fluoranthene; Chrysene; Dibenzo(a,h)anthracene; Fluoranthene; Fluoranthene; Para (a) and Prene (b) fluoranthene; Benzo (g,h,l) perviene; Benzo (k) fluoranthene; Chrysene; Dibenzo(a,h)anthracene; Fluoranthene; Fluoranthene; Para (a) and Prene (b) fluoranthene; Benzo (g,h,l) perviene; Benzo (k) fluoranthene; Chrysene; Dibenzo(a,h)anthracene; Fluoranthene; Fluoranthene; Benzo (b) fluoranthene; Benzo (g,h,l) perviene; Benzo (k) fluoranthene; Chrysene; Dibenzo(a,h)anthracene; Fluoranthene; Fluoranthene; Fluoranthene; Benzo (b) fluoranthene; Benzo (b) fluoranthene; Benzo (g,h,l) perviene; Benzo (k) fluoranthene; Chrysene; Dibenzo(a,h)anthracene; Fluoranthene; Fluoranthene; Benzo (b) fluoranthene; Benzo (g,h,l) perviene; Benzo (k) fluoranthene; Chrysene; Dibenzo(a,h)anthracene; Fluoranthene; Fluoranthene; Benzo (b) fluoranthen		TEST	T METHOD USED:	EPA 608	EPA 8310	EPA 608	SM 2340 C
	PAHs (Acenaphthene, Acenaphthylene; Anthracene; Benzo (a) anthracene; Benzo (b) fluoranthene; Benzo (g,h,l) perviene; Benzo (k) fluoranthene; Chrysene; Dibenzo(a,h)anthracene; Fluoranthene; Pluoranthene; Pluoranthene; Chrysene; Dibenzo(a,h)anthracene; Fluoranthene; Pluoranthene; Pluora		ANALYZE	ED BY (SELF/LAB):	LAB	LAB	LAB	LAB

HCH-gamma (Lindane); Heptachlor; -delta; I in; Endrin aldehyde; HCH-alpha; HCH-beta; HCH Endr Organochlorine Pesticides (4,4 ⁻DDD; 4,4 ⁻DDE; 4,4 ⁻DDT; Aldrin; Chlordane; Dieldrin; Endosulfan I; Endos Heptachlor epoxide; and Toxaphene)

.

Form 1 - page 5 of 10

2013-2014 ANNUAL REPORT FORM 1 - SAMPLING & ANALYSIS RESULTS SECOND STORM EVENT

• If analytical results are less than the detection limit (or non detectable), show the value as less than the • When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), numerical value of the detection limit (example: <.05)

Make additional copies of this form as necessary.

If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

NAME OF PERSON COLLECTING SAMPLES: Anna Wernet

TITLE: AMEC, Consultant

S SIGNATURE:

100	· · · · · · · · · · · · · · · · · · ·			The second second second	ACCREMENTS OF	-	CONTRACTOR OF		and the Balance	-			and the local division of the local division				
			TOTAL ZINC Zn _t	46	730	066	300	700	1000	150	460	120	hg/L	0.2	EPA 200.8	LAB	
			TOTAL IRON Fe _t	0.085	0.30	2.1	1.1	3.3	2.0	0.061	1.7	0.10	mg/L	7.4	EPA 200.8	LAB	
		ameters	OIL RANGE ORGANICS (C22-C36)	<0.05	0.25	0.15	<0.05	<0.05	0.14	0.15	0.23	0.18	mg/L	0.05	EPA 8015B	LAB	
	ILTS vent	Other Parameters	JET-A	<0.05	0.17	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/L	0.05	EPA 8015B	LAB	Substances
	ANALYTICAL RESULTS for Second Storm Event		DIESEL RANGE ORGANICS (C10-C24)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/L	0.05	EPA 8015B	LAB	MBAS - Methylene Blue Active Substances
	ANAL YT for Seco		MBAS	<0.05	0.340	0.310	0.280	0.190	0.390	<0.05	0.350	<0,05	mg/L	0.05	EPA 425.1	LAB	MBAS - Meth
			O&G	<2.0	2.90	2.20	<2.0	<2.0	3.30	<2.0	2.40	<2.0	mg/L	2.0	EPA 1664	LAB	l Grease
		Basic Parameters	S	186	443	236	183	257	166	164	305	170	hmhos/cm	0.1	EPA 120.1	LAB	O&G - Oil and Grease
		Basic Pa	TSS	7	86.0	63.0	189	26	69.0	7.00	51.0	10.0	mg/L	~~	USED: EPA 150.1 EPA 160.2	LAB	
			Hd	7.05	6.40	6.70	7.12	6.65	6.51	7.05	6.98	7.18	pH units	0.1	EPA 150.1	LAB	
	TIME DISCHARGE STARTED			11/21/2013 5:06	10/29/2013 2:20	10/29/2013 2:20	10/29/2013 2:20	11/21/2013 5:06	10/29/2013 2:20	10/29/2013 2:20	10/29/2013 2:20	10/29/2013 2:20	TEST REPORTING UNITS:	TEST METHOD DETECTION LIMIT:	TEST METHOD USED:	ANALYZED BY (SELF/LAB):	SC - Specific Conductance
	DATE/TIME OF SAMPLE COLLECTION			11/21/2013 5:20	10/29/2013 3:55	10/29/2013 3:45	10/29/2013 4:30	11/21/2013 5:40	10/29/2013 2:55	10/29/2013 2:40	10/29/2013 3:00	10/29/2013 3:10	TEST	TEST METHOD	TE	ANALYZ	
	DESCRIBE DISCHARGE LOCATION Example: NW Out Fall			C-B01-1a	C-B03-2	C-B05-4	C-B06-5a	C-B07-6	C-B07-7	C-B08-8	C-B09-10b	C-B12-9a					TSS - Total Suspended Solids

Form 1 - page 6 of 10

- When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box. 2013-2014 ANNUAL REPORT FORM 1 - SAMPLING & ANALYSIS RESULTS <u>SECOND STORM EVENT</u> value of the detection limit (or non detectable), show the value as less than the numerical When analysis is

· If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

· Make additional copies of this form as necessary.

NAME OF PERSON COLLECTING SAMPLES: Anna Wernet

TITLE: AMEC, Consultant

7 Z SIGNATURE:

		GLYCOL							<4.7			mg/L	4.7	EPA 8015B	LAB	
		AMMONIA as N	0.320	8.10	3.15	0.850	3.45	4.45	0.250	2.40	0.400	mg/L	0.1	SM 4500-NH3	LAB	
		COD	12.0	196	168	456	195	184	28.0	280	77.0	mg/L	0.1	EPA 410.4	LAB	pu
SULTS Event	Cont.)	BOD	2.10	88.0	67.0	195	21.8	71.8	10.4	53.0	12.4	mg/L	2	EPA 405.1 EPA 410.4	LAB	Dxygen Dema
ANALYTICAL RESULTS for Second Storm Event	Other Parameters (Cont.)	DISSOLVED COPPER Cu _d	4.0	790	530	71	43	220	53	50	21	hg/L	0.15	EPA 200.8	LAB	COD - Chemical Oxygen Demand
ANAL) for Sec	Other	TOTAL COPPER Cu _t	4.7	960	710	91	190	310			30	hg/L	0.15	EPA 200.8	LAB	0
		TOTAL ALUMINUM Al _t	06	3100	2300	1100	180		42	1 · I	. 78	hg/L	2.4	EPA 200.8	LAB	Demand
		TOTAL LEAD Pb _t	<0.18	120	<0.18	12	<0.18	<0.18	<0.18	<0.18	<0.18	hg/L	0.18	EPA 200.8	LAB	BOD - Biological Oxygen Demand
		DISSOLVED ZINC Zn _d	14	590		210			94		100	µg/L	0.2	EPA 200.8	LAB	BOD - Biolo
TIME DISCHARGE STARTED			11/21/2013 5:06	10/29/2013 2:20	10/29/2013 2:20	10/29/2013 2:20	11/21/2013 5:06	10/29/2013 2:20	10/29/2013 2:20	10/29/2013 2:20	10/29/2013 2:20	TEST REPORTING UNITS:	DETECTION LIMIT:	TEST METHOD USED:	ANALYZED BY (SELF/LAB):	
DATE/TIME OF SAMPLE COLLECTION			11/21/2013 5:20	10/29/2013 3:55	10/29/2013 3:45	10/29/2013 4:30	11/21/2013 5:40	10/29/2013 2:55	10/29/2013 2:40	10/29/2013 3:00	10/29/2013 3:10	TESTR	TEST METHOD DETECTION LI	ΤE	ANALYZI	
DESCRIBE DISCHARGE LOCATION Example: NW Out Fall			C-B01-1a	C-B03-2	C-B05-4	C-B06-5a	C-B07-6	C-B07-7	C-B08-8	C-B09-10b	C-B12-9a					

Form 1 - page 7 of 10

all summer and

the second s

2013-2014 ANNUAL REPORT FORM 1 - SAMPLING & ANALYSIS RESULTS

• If analytical results are less than the detection limit (or non detectable), show the value as less than the appropriate test method used box.

· If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

· Make additional copies of this form as necessary.

NAME OF PERSON COLLECTING SAMPLES: Anna Wernet

TITLE: AMEC, Consultant

N S SIGNATURE:

									-	• •		
DESCRIBE DISCHARGE LOCATION Example: NW Out Fail	DATE/TIME OF SAMPLE COLLECTION	TIME DISCHARGE STARTED					ANALY7 for Seco	ANALYTICAL RESULTS for Second Storm Event	SULTS i Event			
					Ad	Iditional Pa	rameters (ad	Ided prior to	Additional Parameters (added prior to 2013-2014 wet season)	wet season)		
			DISSOLVE D SILVER Ag _d	TOTAL SILVER Ag _t	DISSOLVED ARSENIC As _d	TOTAL Arsenic As _t	DISSOLVED CADMIUM Cd _d	TOTAL CADMIUM Cd _t	DISSOLVED TRIVALENT CHROMIUM CrIII _d	TOTAL TRIVALENT CHROMIUM Crili _t	DISSOLVED HEXAVALENT CHROMIUM CrVI _d	TOTAL HEXAVALENT CHROMIUM CrVI _t
C-B01-1a	11/21/2013 5:20	11/21/2013 5:06	<0.14	<0.14	<0.61	<0.61	<0.18	<0.18	<0.0012	<0.0012	<0.00027	<0.00027
· C-B03-2	10/29/2013 3:55	10/29/2013 2:20	<0.14	<0.14	<0.61	<0.61	<0.18	<0.18	<0.0012	<0.0012	<0.00027	<0.00027
C-B05-4	10/29/2013 3:45	10/29/2013 2:20	8 8	<0.14	<0.61	<0.61	<0.18	<0.18	<0.0012	<0.0012	<0.00027	<0.00027
C-B06-5a	10/29/2013 4:30	10/29/2013 2:20	<0.14	<0.14	<0.61	<0.61	<0.18	<0.18	<0.0012	<0.0012	<0.00027	<0.00027
C-B07-6	11/21/2013 5:40	11/21/2013 5:06										
C-B07-7	10/29/2013 2:55	10/29/2013 2:20										
C-B08-8	10/29/2013 2:40	10/29/2013 2:20			,							
C-B09-10b	10/29/2013 3:00	10/29/2013 2:20										
C-B12-9a	10/29/2013 3:10	10/29/2013 2:20										
	TEST RE	TEST REPORTING UNITS:	hg/L	hg/L	hg/L	hg/L	hg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	TEST METHOD D	TEST METHOD DETECTION LIMIT:	0.14	0.14	0.61	0.61	0.18	0.18	0.0012	0.0012	0.00027	0.00027
	TEST	TEST METHOD USED:	EPA 200.8	EPA 200.8	EPA 200.8	EPA 200.8	EPA 200.8	EPA 200.8	EPA 200.8	EPA 200.8	EPA 218.6	EPA 218.6
	ANALYZEI	ANALYZED BY (SELF/LAB):	LAB	LAB	LAB	LAB	LAB	LAB	LAB	LAB	LAB	LAB

Form 1 - page 8 of 10

A COMPANY AND A COMPANY

A THE CONTRACTOR

1.10

 When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box. · Make additional copies of this form as necessary. 2013-2014 ANNUAL REPORT FORM 1 - SAMPLING & ANALYSIS RESULTS • If analytical results are less than the detection limit (or non detectable), show the value as less than the numerical • When analytical the detection limit (example: <.05) · If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

NAME OF PERSON COLLECTING SAMPLES: Anna Wernet

TITLE: AMEC, Consultant

SIGNATURE:

DESCRIBE DISCHARGE LOCATION Example: NW Out Fail	DATE/TIME OF SAMPLE COLLECTION	TIME DISCHARGE STARTED				~~~	ANALYTICAL RESULTS for Second Storm Event	AL RESU Storm E	ILTS vent			
					Additiona	I Parameter	rs (added pr	ior to 2013-	-2014 wet st	Additional Parameters (added prior to 2013-2014 wet season) (Cont.)	(;	
			DISSOLVED CHROMIUM Cr _d	TOTAL CHROMIUM Cr _t	DISSOLVED MERCURY Hg _d	Ŵ	total dissolved Ercury Nickel H9, Ni _d	TOTAL NICKEL Ni _t	DISSOL VED LEAD Pb ₄	TOTAL FECAL COLIFORM COLIFORM		ENTEROCOCCUS
C-B01-1a	11/21/2013 5:20	11/21/2013 5:06	<0.26	<0.26	<0.15	<0.02	<0.46	<0.46	<0.18			1 8
C-B03-2	10/29/2013 3:55	10/29/2013 2:20	<0.26	<0.26	<0.15	<0.02	39	48	62			
C-B05-4	10/29/2013 3:45	10/29/2013 2:20	<0.26	<0.26	<0.15	<0.02	16	20.0	<0.18			
C-B06-5a	10/29/2013 4:30	10/29/2013 2:20	<0.26	<0.26	<0.15	<0.02 6.7	6.7	7.9	<0.18			
C-B07-6	11/21/2013 5:40	11/21/2013 5:06										
C-B07-7	10/29/2013 2:55	10/29/2013 2:20	1 1									
C-B08-8	10/29/2013 2:47	10/29/2013 2:20								6.0	7	5
C-B09-10b	10/29/2013 3:06	10/29/2013 2:20								0006	50	0006
C-B12-9a	10/29/2013 3:10	10/29/2013 2:20										
	TEST	TEST REPORTING UNITS:	hg/L	hg/L	hg/L	hg/L	hg/L	þg/L	hg/L	CFU/100ml CFU/100ml	CFU/100ml	CFU/100ml
	TEST METHOD	TEST METHOD DETECTION LIMIT.	0.26	0.26	0.15	0.02	0.46	0.46	0.18	1/100	-	1/100
	Ħ	TEST METHOD USED:	EPA 200.8	EPA 200.8	EPA 245.1	EPA 245.1	EPA 200.8	EPA 200.8	EPA 200.8	SM 9222B	SM 9222D	SM 9230C
	ANALY	ANALYZED BY (SELF/LAB):	LAB	LAB	LAB	LAB	LAB	LAB	LAB	LAB	LAB	LAB

Form 1 - page 9 of 10

μg/L μg/L μg/L μg/L 0.4 0.00119-0.0942 0.002-0.5	• If analytical resu (example: <-05) • If you did not ar NAME OF PER DISCHARGE DISCHARGE DISCHARGE LOCATION Example: NW Out Fall NW Out Fall C-B03-2 C-B03-2 C-B05-4 C-B06-5a C-B06-5a C-B07-7 C-B08-8 C-B07-7 C-B08-8 C-B07-7 C-B08-8 C-B07-7 C-B07-2	RSON COLLECTING analyze for a required pa analyze for a required pa E DATE/TIME OF SAMPLE COLLECTION 10/29/2013 3:55 10/29/2013 3:45 10/29/2013 3:45 10/29/2013 3:45 10/29/2013 3:40 10/29/2013 2:55 10/29/2013 2:55 10/29/2013 2:55 10/29/2013 2:55 10/29/2013 2:55	If analytical results are less than the detection limit (or non detectable (example: <.05) If you did not analyze for a required parameter, do not report "0". Ins NAME OF PERSON COLLECTING SAMPLES: Anna Wernet DISCHARGE DATE/TIME OF DISCHARGE STARTED DISCHARGE SAMPLE DISCHARGE Feample: NM Out Fall NM OUT FALL	SI show the value as less than the tead, leave the appropriate box t VCHLORINATED BIPHENYL Is Holds, -1221, -1232, -1242, - e0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <	SECOND STORM EVENT the numerical value of the detection limit meters, etc.), indicate PA" in the appropriate meters, etc.), indicate PA" in the appropriate MALYTICAL RESULTS ANALYTICAL RESULTS ANALYTICAL RESULTS MALYTICAL RESULTS Andditional Parameters (added prior to 2013-2014 wet season) (cont.) VLS POLYCYCLIC AROMATIC MADDING PAHS) PESTICIDES MADDINES 43.4 -0.00119-0.0942 -0.002-0.5 -0.002-0.5 -0.00119-0.0942 -0.00119-0.0942 -0.002-0.5	ENIT When analysis is done using detection limit when analysis is done using meters, etc.), indicate "PA" in . Anal Valuant Make additional copies of thi . Consultant SIGNATURE: Anal VTICAL RESULTS For Second Storm Event For Second Storm Event For Second Storm Event Anal VTICDES Anal VOLORIOES Anal VOLORIO Anal VOLORIO Anal VOLORIO SIGNATURE: Anal VOLORIO SIGNATURE: Anal VOLORIO SIGNATURE: Anal VOLORIO SIGNATURE: Anal VOLORIO SIGNATIC Anal VIC SIGNATIC Anal VIC SIGNATIC Anal VIC SIGNATIC Anal VIC SIGNATIC Anal VIC </th <th>When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate 'PA" in the appropriate test method used box. Make additional copies of this form as necessary. SIGNATURE: Art Art Art Art Art Art Art Art Art</th>	When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate 'PA" in the appropriate test method used box. Make additional copies of this form as necessary. SIGNATURE: Art Art Art Art Art Art Art Art Art
		TEST RE	EPORTING UNITS:	hg/L	μg/L	μg/L	mg/L
		TEST METHOD D	DETECTION LIMIT:	190 L	ну. 0.00119-0.0942	ну г 0.002-0.5	пус 0.4
LAB LAB LAB LAB LAB LAB		TESI ANALYZE	TEST METHOD USED: -YZED BY (SELF/LAB):	EPA 608 LAB	EPA 8310 LAB	EPA 608 LAB	SM 2340 C LAB

Heptachlor epoxide; and Toxaphene)

Form 1 - page 10 of 10

A LONG TO A LONG LONG TO A RULE OF

2013-2014 ANNUAL REPORT

FORM 2-QUARTERLY VISUAL OBSERVATIONS OF <u>AUTHORIZED</u> NON-STORM WATER DISCHARGES (NSWDS)

- .
- Quarterly dry weather visual observations are required of each authorized NSWD. Observe each authorized NSWD source, impacted drainage area, and discharge location. .
- Authorized NSWDs must meet the conditions provided in Section D (pages 5-6), of the General Permit. Make additional copies of this form as necessary. .
 - •

| YES If YES, complete |
|---------------------------------|---------------------------------|---------------------------------|--|
| reverse side of | reverse side of | reverse side of | reverse side of |
| NO this form. | NO this form. | NO this form. | NO this form. |
| WERE ANY AUTHORIZED NSWDS |
| DISCHARGED DURING THIS QUARTER? |
Observers Name: Anna Wernet	Observers Name: Anna Wernet	Observers Name: Claire Johnson	Observers Name: Anna Wernet Title: AMEC, Consultant Signature:
Title: AMEC, Consultant	Title: AMEC, Consultant	Title: AMEC, Consultant	
Signature:	Signature:	Signature: AMM AM	
QUARTER:	QUARTER:	QUARTER:	QUARTER:
JULY-SEPT.	OCTDEC.	JAN-MARCH	APRIL-JUNE
DATE:	DATE:	DATE:	DATE:
9/18-19/13	12/3-5/13	3/17-24/14	5/19-30/14

1011 N. N

10.000

SIDE A

2013-2014	ANNUAL REPORT
-----------	----------------------

FORM 2-QUARTERLY VISUAL OBSERVATIONS OF <u>AUTHORIZED</u> NON-STORM WATER DISCHARGES (NSWDs)

				_		 والمراجع المتحديد المتحديد	5 (5 (1)) · · · · · · · · · · · · · · · · · ·		
DESCRIBE ANY REVISED OR NEW BMPs AND PROVIDE THEIR IMPLEMENTATION DATE		None							
DESCRIBE AUTHORIZED NSWD CHARACTERISTICS Indicate whether authorized NSWD is clear, cloudy, or discolored, causing staining, contains floating objects or an oil sheen, has odors, etc.	At the NSWD Drainage Area and Discharge Location	clear, odorless							
DESCRIBE AL CHARA Indicate whether authoria discolored, causing stail discolored or an oil shee	At the NSWD Source	clear, odorless							
NAME OF AUTHORIZED NSWD	<u>EXAMPLE:</u> Air conditioner condensate	Fire Fighting Discharge (training)							
SOURCE AND LOCATION OF AUTHORIZED NSWD	EXAMPLE: Air conditioner Units on Building C	ARFF Fire Fighting Equipment							
DATE /TIME OF OBSERVATION		3/19/2014	12:30 AM		MA D	MA 		MA MA	MA MA

SIDE B

2014	REPORT
2013-	ANNUAL

FORM 3-QUARTERLY VISUAL OBSERVATIONS OF UNAUTHORIZED **NON-STORM WATER DISCHARGES (NSWDs)**

- Unauthorized NSWDs are discharges (such as wash or rinse waters) that do not meet the conditions provided in
 - Quarterly visual observations are required to observe current and detect prior unauthorized NSWDs. Section D (pages 5-6) of the General Permit.
- Quarterly visual observations are required during dry weather and at all facility drainage areas.
- Each unauthorized NSWD source, impacted drainage area, and discharge location must be identified and observed.
- Unauthorized NSWDs that cannot be eliminated within 90 days of observation must be reported to the Regional Board in accordance with Section A.10.e of the General Permit.

 Make additional complexition 	Make additional copies of this form as necessary.			
QUARTER: JULY-SEPT.				If YES to
	Observers Name: Anna Wernet			either
DATE OF		NSWDS OBSERVED?		auestion.
OBSERVATIONS	Title: AMEC. Consultant	ACTION ATIONS OF		complete
				ravarca
9/18-19/2013	N C BYC	PRIOR UNAUTHORIZED NSWUS		side
				LE VEC 12
QUARTER: OCTDEC.				
	Observers Name: Anna Wernet			either
DATE OF		NSWDS OBSERVED ?		question,
OBSERVATIONS	Title AMEC Consultant			complete
		WERE THERE INDICATIONS OF		
12/ 3-5/2013		PRIOR UNAUTHORIZED NSWDs?	YES 🗆 NO 🔳	reverse
	Signature:			side.
QUARTER: JANMARCH				If YES to
	Observers Name: Claire Johnson	WERE UNAUTHORIZED		either
DATE OF		NSWDs OBSERVED?		anestion
OBSERVATIONS	Title. AMEC Concultant			qaooilori, comploto
		WERE THERE INDICATIONS OF		
3/17-24/2014	Place /1/	PRIOR UNAUTHORIZED NSWDs?	YES 🗌 NO	reverse
	Signature: / ////// Charlow]	side.
QUARTER: APRIL-JUNE				If YES to
	Observers Name: Anna Wernet	WERE UNAUTHORIZED		either
DATE OF		NSWDs OBSERVED?		question.
OBSERVATIONS	Title: AMEC. Consultant			complete
				reverse
5/19-30/2014	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	PHIOK UNAU I HORIZED NSWUS		side
_				

SIDE A

FORM 3 QUARTERLY VISUAL OBSERVATIONS OF <u>UNAUTHORIZED</u> NON-STORM WATER DISCHARGES (NSWDs)

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>09/18/13</u> <u>9:08</u> ■ AM □ PM	Hydraulic oil	Delta Airlines - Gate	Spilled hydraulic oil observed at Gate 51.	Confirmation of issue(s) resolution received 11/15/13. Email was sent to Delta. Area was cleaned.
<u>09/18/13</u> <u>9:08</u> ■ AM □ PM	Trash	Delta Airlines - Gate	Foreign object debris (FOD) containers observed to be uncovered at Gates 48 and 49.	Confirmation of issue(s) resolution received 11/15/13. Email was sent to Delta. Delta advised all agents to ensure FOD buckets remain sealed.
<u>09/18/13</u> <u>9:29</u> ■ AM □ PM	Lavatory fluid	SkyWest Airlines – Commuter Terminal	Lavatory waste truck observed to have accumulated liquid in hose.	Confirmation of issue(s) resolution received 04/14/14. Email was sent to SkyWest. Hoses were drained immediately after inspection. No issues detected during 12/3/13 inspection.
<u>09/18/13</u> <u>9:29</u> ■ AM □ PM	Hydraulic oil	SkyWest Airlines – Commuter Terminal	Hydraulic oil spill observed on ramp.	Confirmation of issue(s) resolution received 04/14/14. Email was sent to SkyWest. Area was cleaned. No issues detected during 12/3/13 inspection.

FORM 3 QUARTERLY VISUAL OBSERVATIONS OF <u>UNAUTHORIZED</u> NON-STORM WATER DISCHARGES (NSWDs)

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>09/18/13</u> <u>9:37</u> ■ AM □ PM	Oil spill	American Airlines - Airside	Equipment observed to be leaking.	Confirmation of issue(s) resolution received 10/09/13. Email was sent to American. Leaking equipment removed for repairs.
<u>09/18/13</u> <u>9:37</u> ■ AM □ PM	Water source	American Airlines - Airside	Water hose in wash rack area observed to be leaking.	Confirmation of issue(s) resolution received 10/09/13. Email was sent to American. Nozzle on hose replaced and no longer leaking.
<u>09/18/13</u> <u>9:37</u> ■ AM □ PM	Sediment	American Airlines – Maintenance	Accumulated sediment observed in maintenance yard.	Confirmation of issue(s) resolution received 10/09/13. Email was sent to American. Area was swept and sediment removed.
<u>09/18/13</u> <u>9:44</u> ■ AM □ PM	Petroleum spill	Allied – Fueling Area	Spilled gasoline/diesel observed outside fueling lanes.	Confirmation of issue(s) resolution received 10/08/13. Email was sent to Allied. Area was steam cleaned and is inspected regularly.

FORM 3 QUARTERLY VISUAL OBSERVATIONS OF <u>UNAUTHORIZED</u> NON-STORM WATER DISCHARGES (NSWDs)

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>09/18/13</u> <u>9:44</u> AM	Trash	Allied – Fueling Area	FOD observed at fueling station.	Confirmation of issue(s) resolution received 10/04/13. Email was sent to Allied.
			-	Sweeping activities were increased to control FOD.
<u>09/18/13</u>	Improper storage	Allied – Storage Area	Equipment stored outdoors without proper cover.	Confirmation of issue(s) resolution received 10/04/13.
<u>9:44</u>				Email was sent to Allied. Tenant covered equipment that was still operational and has planned to remove non-operational equipment.
09/18/13	Fuel spill	ASIG – Other	Spilled Jet-A fuel observed adjacent to vehicle.	Confirmation of issue(s) resolution received 10/22/13.
<u>9:54</u> ■ AM □ PM				Email was sent to ASIG. Leaking vehicle repaired. Tenant briefed mechanics to place drip pans.
09/18/13	Oil spill	ASIG – Maintenance	Spilled oil observed from vehicle in maintenance yard.	Confirmation of issue(s) resolution received 10/22/13.
<u>9:54</u> ■ AM □ PM				Email was sent to ASIG. Tenant briefed mechanics on proper procedure.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>09/18/13</u> <u>9:54</u> ■ AM □ PM	Oil spill	ASIG – North Ramp	Spilled oil adjacent to FedEx operational area.	Confirmation of issue(s) resolution received 10/22/13. Email was sent to ASIG. Area was cleaned and tenant briefed maintenance on proper procedure.
<u>09/18/13</u> <u>9:54</u> ■ AM □ PM	Petroleum spill	ASIG – Fueling Area	Spilled gasoline/diesel observed outside fueling lanes.	Confirmation of issue(s) resolution received 10/22/13. Email was sent to ASIG. Area was cleaned and tenant briefed maintenance on proper procedure.
09/18/13 10:55 ■ AM □ PM	Hydraulic oil spill	Southwest Airlines – Gate	Hydraulic oil from jet engine observed at gate after airplane left area.	Confirmation of issue(s) resolution received 10/11/13. Email was sent to Southwest Airlines. The area was cleaned and the tenant reviewed procedures with employees.
<u>09/18/13</u> <u>10:55</u> ■ AM □ PM	Improper storage	Southwest Airlines – Terminal 1	55 gallon drum of used absorbent not properly contained.	Confirmation of issue(s) resolution received 10/11/13. Email was sent to Southwest Airlines. Absorbent was moved under cover and the tenant reviewed procedures with employees.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE:	SOURCE AND LOCATION OF UNAUTHORIZED NSWD EXAMPLE:	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
	Vehicle Wash Water	NW Corner of Parking Lot		
<u>09/18/13</u>	Hydraulic oil spill	Southwest Airlines – Gate	Hydraulic oil from jet engine observed at gate after airplane left area.	Confirmation of issue(s) resolution received 10/11/13.
<u>10:55</u> ■ AM □ PM				Email was sent to Southwest Airlines. The area was cleaned and the tenant reviewed procedures with employees.
<u>09/18/13</u>	Trash	Flagship – Terminal 1	Uncovered dumpster observed at Gate 5.	Confirmation of issue(s) resolution received 09/18/13.
<u>10:56</u> ■ AM □ PM				Issue was resolved on site. Inspector observed Flagship personnel closing dumpster.
<u>09/18/13</u>	Trash	Flagship – Terminal 1	Accumulated trash and debris were observed at the dumpster staging area near the conveyor belts in Terminal 1.	Confirmation of issue(s) resolution received 12/13/13.
<u>10:56</u> ■ AM □ PM				Email was sent to Flagship. Flagship will continue monitoring and cleaning area as necessary.
09/18/13	Trash	Elite Line Services– Terminal 1	Accumulated trash and debris were observed near the conveyor belts in Terminal 1.	Confirmation of issue(s) resolution received 10/09/13.
<u>11:06</u> ■ AM □ PM				Email was sent to Flagship. Flagship will continue monitoring and cleaning area as necessary.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>09/18/13</u>	Oil stain	Alaska Airlines – Gate	Fresh oil spots were observed.	Confirmation of issue(s) resolution received 10/08/13.
<u>1:11</u>				Email was sent to Alaska. Tenant reviewed cleanup requirements and inspected equipment for leaks.
09/18/13	Oil stain	Japan Airlines – Gate	Fresh hydraulic oil was observed at Gate 20.	Confirmation of issue(s) resolution received 10/04/13.
<u>1:39</u>				Email was sent to JAL. Tenant advised vendors of procedure.
09/18/13	Improper storage	HMS Host – Terminal 2 General	Unused equipment, which appears to be waste was observed next to HMS conex storage container staged adjacent to Gate 24.	Confirmation of issue(s) resolution received 09/27/13.
<u>2:00</u>				Email was sent to HMS Host. Unused equipment was removed and area was cleaned.
09/18/13	Oil spill	Frontier Airlines – Gate	WFS tug cart parked at gate 28 was observed to be leaking.	Confirmation of issue(s) resolution received 10/01/13.
<u>2:03</u>				Email was sent to Frontier. Leak was identified and repaired. Spill was cleaned.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>09/18/13</u> <u>2:16</u>	Oil spill	US Airways – Gate	Spilled hydraulic oil was observed at gate 34.	Confirmation of issue(s) resolution received 09/27/13. Email was sent to US Airways. Spill was cleaned.
<u>09/18/13</u> <u>2:16</u>	Trash	US Airways – Gate	FOD container was observed to be uncovered.	Confirmation of issue(s) resolution received 09/26/13. Email was sent to US Airways. Tenant briefed employees to ensure trash bins are covered.
<u>09/19/13</u> <u>8:29</u> ■ AM □ PM	Trash	FedEx – Parking lot	Accumulated trash was observed throughout the parking lot used by FedEx employees.	Confirmation of issue(s) resolution received 09/30/13. Email was sent to FedEx. Tenant directed sweeper to focus on parking lot and ramp areas.
<u>09/19/13</u> <u>8:29</u> ■ AM □ PM	Oil stains	FedEx – North Ramp	FedEx tug used on the ramp operations (westside) was observed to be leaking	Confirmation of issue(s) resolution received 09/30/13. Email was sent to FedEx. Stains are from overspill from fueling. Stains were cleaned.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>09/19/13</u> <u>8:29</u> ■ AM □ PM	Oil spill	FedEx – North Ramp	Spilled gasoline/oil was observed in front of conveyer belt operating equipment. Per maintenance operations from FedEx, this was caused by ASIG personal.	Confirmation of issue(s) resolution received 09/30/13. Email was sent to FedEx. ASIG cleaned the area.
<u>09/19/13</u> <u>8:29</u> ■ AM □ PM	Improper storage	FedEx – Storage Area	Outdoor storage covers are deteriorated and should be replaced prior to the start of the rainy season.	Confirmation of issue(s) resolution received 09/30/13. Email was sent to FedEx. Materials were moved to shed or covered with plastic.
<u>09/19/13</u> <u>8:29</u> ■ AM □ PM	Oil spill	FedEx – North Ramp	Spilled oil was observed adjacent to FedEx storage crates.	Confirmation of issue(s) resolution received 09/30/13. Email was sent to FedEx. Area was cleaned and spill material properly disposed of.
<u>09/19/13</u> <u>8:58</u> ■ AM □ PM	Sediment	Bradford – Other	Accumulated sediment and debris observed in treatment control BMPs.	Confirmation of issue(s) resolution received 09/25/13. Email was sent to Bradford. Sediment was removed.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>09/19/13</u> <u>9:16</u> ■ AM □ PM	Improper Storage	ARFF – ARFF Station	Equipment stored outdoors observed to be uncovered.	Confirmation of issue(s) resolution received 06/20/14. Email was sent to ARFF. The area was re-inspected 06/20/14 and no issue was found.
<u>09/19/13</u> <u>9:16</u> ■ AM □ PM	Improper Storage	ARFF – ARFF Station	Equipment stored outdoors observed to be inoperable (flat tire) and uncovered.	Confirmation of issue(s) resolution received 12/03/13. Email was sent to ARFF. The area was re-inspected 12/03/13 and no issue was found.
<u>09/19/13</u> <u>9:29</u> ■ AM □ PM	Sediment	SDCRAA – North Ramp	Sediment dumpster was observed uncovered.	Confirmation of issue(s) resolution received 10/23/13. Dumpster was covered.
<u>09/19/13</u> <u>9:29</u> ■ AM □ PM	Sediment	SDCRAA – Storage Area	Bone Yard drain insert observed to have accumulated sediment.	Confirmation of issue(s) resolution received 10/23/13. The BMP was repaired/replaced.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>09/19/13</u>	Trash	SDCRAA – Other (Triturator)	Accumulated trash was observed at the Triturator.	Confirmation of issue(s) resolution received 10/23/13.
<u>9:29</u> ■ AM □ PM				Area was cleaned.
<u>09/19/13</u>	Sediment	SDCRAA – Other (Behind Blast Fence)	Storm drain protections observed to have accumulated sediment and debris.	Confirmation of issue(s) resolution received 10/23/13.
<u>9:29</u> ■ AM □ PM				The BMP was repaired/replaced.
09/19/13	Trash	SDCRAA – Storage Area	Accumulated trash, debris, and absorbant observed throughout Generator Area.	Confirmation of issue(s) resolution received 10/23/13.
<u>9:29</u> ■ AM □ PM				A workorder was submitted and the area was cleaned.
09/19/13	Oil stain	UPS – North Ramp	Oil and gasoline residue observed adjacent to equipment.	Confirmation of issue(s) resolution received 10/04/13.
<u>10:15</u> ■ AM □ PM				The areas were pressure washed and scrubbed according to the approved Wash Plan.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>09/19/13</u> <u>10:24</u>	Sediment	DHL – North Ramp	A storm drain with broken sand/gravel bags was observed within loading/unloading area.	Confirmation of issue(s) resolution received 10/22/13. Email was sent to DHL. Broken bags were removed and replaced.
<u>09/19/13</u> <u>10:24</u> ■ AM □ PM	Oil spill	DHL – North Ramp	ABX Air equipment were observed to be leaking.	Confirmation of issue(s) resolution received 10/22/13. Email was sent to DHL. The area was cleaned and equipment checked for leaks. Drip pans were used as necessary.
<u>09/19/13</u> <u>10:38</u> ■ AM □ PM	Oil spill	Landmark Aviation – North Ramp	Various equipment observed to be leaking without drip pans.	Confirmation of issue(s) resolution received 10/09/13. Email was sent to Landmark. Area was cleaned and spill material properly disposed of. Leaking equipment repaired or drip pans used.
<u>09/19/13</u> <u>12:45</u>	Oil spill	ACE – Storage Area	Oil leaks observed in Terminal 2 storage area.	Confirmation of issue(s) resolution received 09/25/13. Email was sent to ACE. Area was cleaned and spill material properly disposed of. A drip pan was placed beneath the sweeper.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>12/03/13</u> <u>1:00</u>	Improper storage	FedEx – Parking Lot	Exposed batteries from lights were observed to be along parking spaces.	Confirmation of issue(s) resolution received 06/20/14. Batteries are Authority property. The area was reinspected on 6/20/14 and no batteries were present.
<u>12/03/13</u> <u>1:00</u>	Trash	FedEx – Parking Lot	Trash was observed in the parking lot.	Confirmation of issue(s) resolution received 06/20/14. Email was sent to FedEx. Area is swept weekly.
<u>12/03/13</u> <u>1:00</u>	Oil Spill	FedEx – Cargo Gate	Used spill kit material observed.	Confirmation of issue(s) resolution received 06/20/14. Email was sent to FedEx. Tenant reviewed procedures for dealing with equipment leaks with employees.
<u>12/03/13</u> <u>1:25</u>	Sediment	Allied Aviation – Fueling Area	Accumulated sediment observed throughout operational area.	Confirmation of issue(s) resolution received 04/14/14. Email was sent to Allied Aviation. Area was cleaned.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>12/03/13</u> <u>1:25</u>	Improper storage	Allied Aviation – Storage Area	Rusted material observed outdoors, not under cover.	Confirmation of issue(s) resolution received 06/26/14. Email was sent to Allied Aviation. Area was re-inspected on 06/26/14 and materials had been moved under cover.
<u>12/03/13</u> <u>1:25</u>	Improper storage	Allied Aviation – Storage Area	Paint cans observed outside of proper storage cabinet.	Confirmation of issue(s) resolution received 04/14/14. Email was sent to Allied. Paint material was in use by personnel on break, and was stored properly after use.
<u>12/03/13</u> <u>1:55</u>	Sediment	ARFF – Parking Lot	Accumulated sediment observed in parking lot.	Confirmation of issue(s) resolution received 06/20/14. Email was sent to ARFF. Area was reinspected on 6/20/14 and no sediment was observed.
<u>12/03/13</u> <u>1:55</u>	Improper storage	ARFF – ARFF Station	Materials observed outdoors without a cover or containment.	Confirmation of issue(s) resolution received 06/20/14. Email was sent to ARFF. Area was reinspected on 6/20/14 and no materials storage violations were observed.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>12/03/13</u> 2:15 □ AM	Sediment	SDCRAA – Other (Bone Yard)	Accumulated sediment observed to be draining toward nearby storm drain.	Confirmation of issue(s) resolution received 01/22/14. A work order was submitted and
2.15 AM ■ PM 12/03/13	Improper storage	SDCRAA – Other	Unused electronics observed to be uncovered and stored	the area was cleaned. Confirmation of issue(s)
<u>2:15</u> AM		(Bone Yard)	on ground.	A work order was submitted and
PM	-			items were raised off ground and covered.
<u>12/03/13</u>	Trash	SDCRAA – Other (Bone Yard)	Uncovered wastes observed.	Confirmation of issue(s) resolution received 01/22/14.
<u>2:15</u>				A work order was submitted and the area was cleaned.
<u>12/03/13</u>	Sediment	SDCRAA – Other (Triturator)	Accumulated sediment was observed in the vicinity of the storm drain located at the blast fence.	Confirmation of issue(s) resolution received 01/22/14.
<u>2:15</u>				A work order was submitted and the area was swept.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Darking Let	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>12/03/13</u> <u>2:15</u>	Water Improper storage	Parking Lot SDCRAA – Other (Generator Area)	Uncovered rusted stored material was observed.	Confirmation of issue(s) resolution received 01/22/14. A work order was submitted and the items were covered.
<u>12/03/13</u> <u>2:15</u> □ AM ■ PM	Impounded stormwater/ Improper Storage	SDCRAA – Other (Generator Area)	Accumulated stormwater was observed within improperly stored materials.	Confirmation of issue(s) resolution received 01/22/14. A work order was submitted and the area was covered to avoid future stormwater retention.
<u>12/03/13</u> <u>2:15</u>	Sediment/ Improper storage	SDCRAA – Trash/Recycling Area	Area behind compactor observed to have improperly stored material (wooden pallets and cones) and sediment.	Confirmation of issue(s) resolution received 01/07/14. A work order was submitted and the area was cleaned.
<u>12/03/13</u> 2:15 □ AM ■ PM	Water source	SDCRAA – Terminal 2	Water main near Gate 26 was observed to be leaking continuously.	Confirmation of issue(s) resolution received 01/13/14. A work order was submitted and the water main was fixed.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>12/03/13</u> <u>2:15</u>	Sediment	SDCRĂA – Parking Lot	Soil erosion was observed within landscaped areas of the Commuter Terminal and Terminal 1 parking lots. Sediment was observed to have discharged through a storm drain.	Confirmation of issue(s) resolution received 02/14/14. A work order was submitted and erosion control was performed.
<u>12/03/13</u> <u>2:15</u> □ AM ■ PM	Sediment	SDCRAA – Parking Lot	Storm drain within valet parking lot was observed to have inadequate BMP to capture sediment and debris.	Confirmation of issue(s) resolution received 01/07/14. A work order was submitted and the BMP was serviced.
<u>12/03/13</u> 2:34 □ AM ■ PM	Oil spill	UPS – North Ramp	Spilled oil was observed adjacent to IAS subcontractor's office.	Confirmation of issue(s) resolution received on 12/11/13. Email was sent to UPS. The IAS spill is not under the control of UPS. The spill was cleaned by IAS.
<u>12/03/13</u> <u>2:34</u>	Improper storage	UPS – Storage Area	Material stored behind IAS office is not properly covered or contained.	Confirmation of issue(s) resolution received on 12/11/13. Email was sent to UPS. The IAS area is not under the control of UPS. IAS cleaned area.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>12/03/13</u>	Trash	UPS – North Ramp	Trash can was overfilled.	Confirmation of issue(s) resolution received on 12/11/13.
<u>2:34</u>				Email was sent to UPS. The trash can was emptied and all other FOD containers checked. Operations increased frequency of inspections to prevent future overfilling.
12/03/13	Oil spill	DHL – Cargo Gate	Equipment observed to be leaking and drip pan underneath equipment was over full. Spilled material was observed to enter adjacent storm drain.	Confirmation of issue(s) resolution received 12/11/13.
<u>2:45</u>				Email was sent to DHL. DHL stated equipment was new and not leaking. New pan placed under old pan.
<u>12/03/13</u>	Improper storage	DHL – North Ramp	Unknown waste stored behind DHL offices.	Confirmation of issue(s) resolution received 12/11/13.
<u>2:45</u>				Email was sent to DHL. DHL stated the material was new absorbent for spill cleanup. Material was properly labeled.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>12/03/13</u>	Oil spill	DHL – North Ramp	Leaking equipment observed.	Confirmation of issue(s) resolution received 01/11/14.
<u>2:45</u>				Email was sent to DHL. Leaking equipment was found and fixed.
<u>12/03/13</u>	Oil spill	Landmark Aviation – Maintenance	Multiple pieces of equipment near maintenance shop leaking.	Confirmation of issue(s) resolution received 01/14/14.
2:56 ☐ AM ■ PM				Email was sent to Landmark. Leaking equipment was fixed or replaced.
<u>12/03/13</u>	Oil spill	Landmark Aviation – North Ramp	Multiple fuel trucks were observed to be leaking.	Confirmation of issue(s) resolution received 01/14/14.
<u>2:56</u>				Email was sent to Landmark. Drip pans utilized under leaking vehicles. One vehicle replaced.
<u>12/03/13</u>	Improper storage	Landmark Aviation – Storage Area	Materials stored outdoors observed to be uncovered and on ground.	Confirmation of issue(s) resolution received 06/20/14.
2:56 ☐ AM ■ PM				Email was sent to Landmark. Materials were removed and area cleaned up.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>12/03/13</u> <u>2:56</u>	Water Impounded stormwater/ Improper storage	Parking Lot Landmark Aviation – Storage Area	Accumulated storm water was observed in storage area. Stored materials observed to be uncovered.	Confirmation of issue(s) resolution received 06/20/14. Email was sent to Landmark. Area was re-inspected on 6/20 and uncovered materials were not observed.
<u>12/03/13</u> <u>2:56</u>	Improper storage	Landmark Aviation – Storage Area	Stored baggage carts were observed to have flat tires.	Confirmation of issue(s) resolution received 01/14/14. Email was sent to Landmark. Landmark disposed of baggage carts not being utilized.
<u>12/03/13</u> <u>4:16</u>	Trash	Southwest Airlines – Cargo Building	The front of the cargo building was observed to have accumulated trash.	Confirmation of issue(s) resolution received 01/16/14. Email was sent to Southwest Airlines. The area was cleaned and the area supervisor was asked to monitor the area.
<u>12/03/13</u> <u>4:16</u>	Improper Storage	Southwest Airlines – Maintenance	Within subtenant area (Executive Air) a cart was observed with a flat tire and rusted.	Confirmation of issue(s) resolution received 01/16/14. Email was sent to Southwest Airlines. Per Executive Air, cart was removed on 12/11/13.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>12/03/13</u>	Trash	Southwest Airlines – Gate	FOD was observed adjacent to the gate.	Confirmation of issue(s) resolution received on 01/16/14.
<u>4:16</u>				Email was sent to Southwest Airlines. The area was cleaned.
<u>12/03/13</u>	Trash	Southwest Airlines – Gate	An uncovered box was observed to be used as a trash container.	Confirmation of issue(s) resolution received on 01/22/14.
<u>4:16</u>				Email was sent to Southwest Airlines. The box was removed.
12/04/13	Trash	Flagship – Trash/Recycling Area	Accumulated trash originating from the Compactor Area was observed on the other side of the fence.	Confirmation of issue(s) resolution received 01/14/14.
8:05 ■ AM □ PM				Email was sent to Flagship. Area continues to be cleaned.
12/04/13	Trash	Flagship – Terminal 1 General	Trash bins were observed to be full in Terminal 1 General area. Flagship personnel were observed removing trash, although trash on the ground was not picked up.	Confirmation of issue(s) resolution received on 01/14/14.
8:05 ■ AM □ PM				Email was sent to Flagship. Employees are continually trained to pick up trash overflowing from trash bins.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
12/04/13	Water Trash	Parking Lot Flagship – Terminal 1 General	Dumpster was observed uncovered.	Confirmation of issue(s) resolution received 01/14/14.
<u>8:05</u> ■ AM □ PM		i General		Email was sent to Flagship. Employees are continually trained to close all dumpsters.
<u>12/04/13</u>	Trash	Flagship – Terminal 2 General	Accumulated trash was observed on Terminal 2 curbside near baggage claim door 4,5,6.	Confirmation of issue(s) resolution received 01/14/14.
8:05 ■ AM □ PM				Email was sent to Flagship. Cleaning of this area is ongoing.
<u>12/04/13</u>	Trash	Flagship – Parking Lot	Accumulated trash was observed along the landscaped area in Terminal 1 parking lot near T1W1 row.	Confirmation of issue(s) resolution received 01/14/14.
<u>8:05</u> ■ AM □ PM				Email was sent to Flagship. The area was cleaned and continues to be monitored.
<u>12/04/13</u>	Trash	Alaska Airlines – Gate	Recycling container was observed to be full and overflowed recycling is being stored on the ground.	Confirmation of issue(s) resolution received 12/16/13.
<u>9:09</u> ■ AM □ PM				Email was sent to Alaska Airlines. Area was cleaned and employees reminded to empty container on regular basis.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>12/04/13</u>	Trash	Alaska Airlines - Gate	Accumulated trash was observed between gates 15 and 16, behind DGS baggage carts.	Confirmation of issue(s) resolution received 12/16/13.
<u>9:09</u> ■ AM □ PM				Email was sent to Alaska Airlines. Area was cleaned.
<u>12/04/13</u>	Hydraulic oil spill	American Airlines – Gate	Conveyer belt cart (for luggage) was observed to have a hydraulic leak.	Confirmation of issue(s) resolution received on 12/16/13.
<u>10:01</u> ■ AM □ PM				Email was sent to American Airlines. The area was cleaned and belt removed from service for repair.
<u>12/04/13</u>	Trash	American Airlines – Gate	FOD was observed adjacent to gate 23.	Confirmation of issue(s) resolution received on 12/16/13.
<u>10:01</u> ■ AM □ PM				Email was sent to American Airlines. The FOD was removed.
<u>12/04/13</u>	Trash	HMS Host – Terminal 2	Dumpster near gate 24 was observed to be overfilled and uncovered.	Confirmation of issue(s) resolution received on 12/16/13.
<u>10:13</u> ■ AM □ PM				Email was sent to HMS Host. The dumpster does not belong to HMS Host, but the area was cleaned.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash	SOURCE AND LOCATION OF UNAUTHORIZED NSWD EXAMPLE: NW Corner of	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>12/04/13</u>	Water Trash	Parking Lot US Airways – Gate	FOD container and dumpster observed to be uncovered.	Confirmation of issue(s) resolution received on 04/11/14.
<u>10:24</u> ■ AM □ PM				Email was sent to US Airways. FOD container and dumpster were covered.
<u>12/04/13</u>	Trash	US Airways – Gate	Dumpster observed to be uncovered.	Confirmation of issue(s) resolution received 04/11/14.
<u>10:24</u> ■ AM □ PM				Email was sent to US Airways. Dumpster was covered.
<u>12/04/13</u>	Trash	US Airways – Cargo Building	Cigarette butts observed throughout parking lot in front of Cargo Building.	Confirmation of issue(s) resolution received 04/11/14.
<u>10:24</u> ▲ AM □ PM				Email was sent to US Airways. Cargo staff were advised and area was cleaned.
<u>12/05/13</u>	Oil Spill	ASIG – Other	In ASIG operational area spilled oil was observed beneath parked fueling trucks as well as in empty parking spots.	Confirmation of issue(s) resolution received 02/12/14.
<u>7:47</u> ■ AM □ PM				Email was sent to ASIG. ASIG employee coached on spill behavior. Area was cleaned.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>12/05/13</u> <u>7:47</u> ■ AM □ PM	Improper storage	ASIG – Maintenance	Oil containers were observed outdoors on the ground within the maintenance areas. No personnel were observed to be actively using the oil supplies.	Confirmation of issue(s) resolution received 02/12/14. Email was sent to ASIG. GSE employee instructed to store containers not being utilized.
<u>12/05/13</u> <u>9:23</u> ▲ AM □ PM	Trash	Hawaiian Airlines – Gate	FOD container with trash was observed without a lid.	Confirmation of issue(s) resolution received 06/17/14. Email was sent to Hawaiian. Trash bin was permanently removed from area.
<u>12/05/13</u> <u>9:23</u> ■ AM □ PM	Improper storage	Hawaiian Airlines – Gate	Airplane tug was observed to have a flat tire.	Confirmation of issue(s) resolution received 06/17/14. Email was sent to Hawaiian. Airplane tug was removed from area and repaired.
<u>12/05/13</u> <u>9:23</u> ■ AM □ PM	Oil spill	Hawaiian Airlines – Gate	Conveyer belt equipment, belonging to Hawaiian's subcontractor, was observed to have spilled oil/fuel.	Confirmation of issue(s) resolution received 06/17/14. Email was sent to Hawaiian. Area cleaned and materials disposed of.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>12/5/13</u> <u>10:08</u> ▲ AM □ PM	Oil spill	Delta Airlines – Gate	Spilled oil was observed between gates 48 and 49.	Confirmation of issue(s) resolution received 12/20/13. Email was sent to Delta Airlines. Ramp agents were briefed on procedure for spills.
<u>12/5/13</u> <u>10:23</u>	Trash	United Airlines – Cargo Building	Accumulated trash was observed at the front of the cargo building.	Confirmation of issue(s) resolution received 12/13/13. Email was sent to United Airlines. Debris was swept.
<u>12/5/13</u> <u>10:23</u> ■ AM □ PM	Trash	United Airlines – Gate	FOD and trash containers were observed without lids. Similar issue was observed at gates 39, 40 and 41.	Confirmation of issue(s) resolution received 12/15/13. Email was sent to United Airlines. FOD containers belonged to SDCRAA subcontractors. United has ordered new FOD buckets with lids.
<u>12/5/13</u> <u>10:23</u> ■ AM □ PM	Oil spill	United Airlines – Gate	Spilled oil was observed on the ramp at gate 45.	Confirmation of issue(s) resolution received on 12/06/13. Email was sent to United Airlines. Spill was cleaned.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>12/5/13</u> <u>1:07</u> □ AM ■ PM	Trash	ACE – Storage area	Trash can within storage area was observed to be without a lid.	Confirmation of issue(s) resolution received on 1/24/14. Email was sent to ACE. Trash can was covered.
<u>12/5/13</u> <u>2:10</u>	Improper storage	Elite Line Services – Other	Location: North side storage area. Materials stored outdoors (ex. tires) should be covered and raised off the ground. Liquids should be stored with secondary containment.	Confirmation of issue(s) resolution received 1/3/14. Email was sent to ELS. The tires were removed by Ocean Blue.
<u>12/5/13</u> <u>2:10</u> □ AM ■ PM	Trash	Elite Line Services – Gate	Accumulated waste was observed under the baggage conveyer belts near gate 34.	Confirmation of issue(s) resolution received 12/18/13. Email was sent to ELS. Area was cleaned and is cleaned once per month by contract.
03/17/14 1:51 □ AM ■ PM	Trash	American Eagle Airlines – Commuter Terminal General	FOD container uncovered.	Confirmation of issue(s) resolution received 04/11/14. Email was sent to American Eagle. American Eagle covered container.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD EXAMPLE: NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>03/17/14</u> <u>1:51</u>	Oil Spill	American Eagle Airlines – Commuter Terminal General	Vehicle possibly leaking. Fresh hydraulic fluid spill observed.	Confirmation of issue(s) resolution received 04/11/14. Email was sent to American Eagle. American Eagle monitored for leaking vehicles.
<u>03/17/14</u> <u>1:51</u>	Improper storage	American Eagle Airlines – Commuter Terminal General	Absorbent container observed to be stored uncovered and on its side. Uncovered bucket with unknown liquid (possibly wash water) also stored outside.	Confirmation of issue(s) resolution received 04/11/14. Email was sent to American Eagle. American Eagle covered absorbent. Bucket belongs to Delta.
<u>03/17/14</u> <u>1:51</u> □ AM ■ PM	Lavatory waste	American Eagle Airlines – Commuter Terminal General	Lavatory hose not drained. Uncontained lavatory fluids on top of truck.	Confirmation of issue(s) resolution received on 04/11/14. Email was sent to American Eagle. American Eagle drained hose and truck at dumping facility.
03/17/14 1:51 □ AM ■ PM	Sediment	American Eagle Airlines – Commuter Terminal General	Trash and sediment accumulated along fence line.	Confirmation of issue(s) resolution received on 04/14/14. Email was sent to American Eagle. American Eagle will monitor FOD/sediment along fence line.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
0 <u>3/17/14</u> <u>1:51</u>	Oil stain	American Eagle Airlines – Commuter Terminal General	Fresh stains and deposits from oil/fluid leak near commuter terminal parking area. In shared American Eagle/SkyWest area.	Confirmation of issue(s) resolution received on 04/14/14. Email was sent to American Eagle. American Eagle monitored for leaking equipment.
03/17/14 2:00 □ AM ■ PM	Oil stain	Sky West Airlines – Commuter Terminal General	Fresh stains and deposits from oil/fluid leak near commuter terminal parking area. In shared American Eagle/SkyWest area.	Confirmation of issue(s) resolution received 04/14/14. Email was sent to Sky West. Sky West has no management on site. American Eagle/GSE responsible for monitoring equipment.
<u>03/17/14</u> <u>2:01</u>	Trash/sediment	SDCRAA – Commuter Terminal General	Trash and sediment accumulated adjacent to storm drain.	Confirmation of issue(s) resolution received 05/23/14. A work order was submitted and the area cleaned.
03/17/14 2:01 □ AM ■ PM	Trash/sediment	SDCRAA – Fueling Area	Sediment accumulated near fueling area.	Confirmation of issue(s) resolution received 04/09/14. Submitted work request to FMD. Confirmation received that work had been completed on 04/9/14.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>03/17/14</u> <u>2:01</u>	Water source	SDCRĂA – Trash/Recycling Area	Wash water from compactor power washer observed accumulating outside berm.	Confirmation of issue(s) resolution received 05/23/14. A work order was submitted and berm replaced.
03/17/14 2:01 □ AM ■ PM	Water source	SDCRAA – Gate 26	Leaking water pipe observed near Gate 26. Water being collected in bucket, which is overflowing.	Confirmation of issue(s) resolution received 05/23/14. A work order was submitted and the leak was mitigated.
03/17/14 2:01 □ AM ■ PM	Trash	SDCRAA – North Ramp	Rubber removal debris spilling out of dumpster.	Confirmation of issue(s) resolution received 05/23/14. A work order was submitted and the area was cleaned.
03/17/14 2:01 □ AM ■ PM	Trash/sediment	SDCRAA – North Ramp	Rubber disposal and sediment disposal lowboys in North Ramp area uncovered and/or spilling.	Confirmation of issue(s) resolution received 05/23/14. A work order was submitted and the area was cleaned.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>03/17/14</u> <u>2:01</u> □ AM ■ PM	Sediment	SDCRAA – Storage Area	Sediment accumulated in north ramp storage area ("Boneyard") near parked sweeper, as well as along fenceline and under dumpster.	Confirmation of issue(s) resolution received 05/23/14. A work order was submitted and the area was cleaned.
<u>03/17/14</u> <u>2:01</u>	Lavatory waste	SDCRAA – Storage Area	Portable toilet stored in north ramp storage area ("Boneyard") is leaking fluid from the secondary containment. Fluid may be storm water, or could contain sanitary waste.	Confirmation of issue(s) resolution received 05/23/14. A work order was submitted and the area was cleaned.
03/17/14 2:01 □ AM ■ PM	Trash	SDCRAA – Airside Other	Decomposed animal(rodent) and accumulated sediment found in generator area.	Confirmation of issue(s) resolution received 05/23/14. A work order was submitted and the area was cleaned.
03/17/14 2:01 □ AM ■ PM	Improper storage	SDCRAA – Airside Other	Materials stored in generator area are uncovered.	Confirmation of issue(s) resolution received 05/23/14. A work order was submitted and the materials were covered.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash	SOURCE AND LOCATION OF UNAUTHORIZED NSWD EXAMPLE: NW Corner of	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
03/17/14	Water Trash	Parking Lot SDCRAA – Airside Other	Trash can in generator area does not have lid.	Confirmation of issue(s) resolution received 05/23/14.
<u>2:01</u>				A work order was submitted and the trash was covered.
03/17/14	Improper storage	SDCRAA – Airside Other	Gas cans stored adjacent to AST in generator area should be stored properly within secondary containment.	Confirmation of issue(s) resolution received 05/23/14.
<u>2:01</u>				A work order was submitted and the gas cans were stored.
03/17/14	Trash	SDCRAA – Airside Other	Trash can in triturator area is uncovered.	Confirmation of issue(s) resolution received 05/23/14.
2:01 ☐ AM ■ PM				A work order was submitted and the trash was covered.
03/17/14	Trash	SDCRAA – Airside Other	Trash on floor and sink in triturator area.	Confirmation of issue(s) resolution received 04/09/14.
2:01				A work order was submitted and the area was cleaned by Ocean Blue.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
03/17/14 2:01	Lavatory waste	SDCRAA – Airside Other	Lavatory waste appears to be spilled on wall in triturator area.	Confirmation of issue(s) resolution received 04/09/14.
<u>2:01</u>				A work order was submitted and the area was cleaned by Ocean Blue.
03/17/14	Sediment	SDCRAA – Airside Other	Sediment accumulated to depth of 2+ inches behind blast fence near storm drain adjacent to the triturator.	Confirmation of issue(s) resolution received 04/30/14.
<u>2:01</u>				A work order was submitted and Ocean Blue cleaned the area and replaced the filter and gravel bags.
03/17/14	Trash/sediment	SDCRAA – Parking Lot	BMP inside storm drain in valet parking lot near Terminal 1/West Wing appears to be over 50% full.	Confirmation of issue(s) resolution received 05/23/14.
2:01 □ AM ■ PM				A work order was submitted and the area was cleaned.
03/17/14	Sediment	SDCRAA – Parking Lot	Sediment accumulation at entrance to west wing parking lot.	Confirmation of issue(s) resolution received 04/07/14.
2:01				A work order was submitted and sweeping was completed.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>03/17/14</u>	Sediment	Allied Aviation – Airside	Accumulated sediment was observed in satellite fueling area.	Confirmation of issue(s) resolution received on 4/11/14.
<u>2:04</u>				Email was sent to Allied. Operators instructed on importance of clean area.
<u>03/17/14</u>	Trash	Allied Aviation – Airside	Uncovered FOD containers were observed in satellite fueling area.	Confirmation of issue(s) resolution received on 4/11/14.
2:04 ☐ AM ■ PM				Email was sent to Allied. FOD containers to be replaced by end of year. ASIG reminded to cover.
<u>03/17/14</u>	Improper storage	Allied Aviation – Fueling Area	Uncovered stored materials observed in main (North) fueling area. Some materials observed to be rusted.	Confirmation of issue(s) resolution received on 4/11/14.
<u>2:04</u>				Email was sent to Allied. Materials were moved or covered.
03/17/14	Improper storage	Allied Aviation – Fueling Area	Stored materials in main (north) fueling area observed without secondary containment.	Confirmation of issue(s) resolution received on 4/11/14.
2:04				Email was sent to Allied. One container was a spillkit. Other container moved under cover.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
03/17/14	Water source	Allied Aviation – Fueling Area	Storage areas observed to be uncovered, with water accumulated in the secondary containment.	Confirmation of issue(s) resolution received on 4/11/14.
<u>2:04</u>				Email was sent to Allied. Storm water was removed and disposed of correctly.
<u>03/17/14</u>	Sediment	Allied Aviation – Fueling Area	Accumulated sediment observed along fence line in main fuel storage area, leading to storm drain.	Confirmation of issue(s) resolution received on 4/11/14.
2:04 □ AM ■ PM				Email was sent to Allied. Sediment was removed.
<u>03/17/14</u>	Oil spill	Delta Airlines – Commuter Terminal General	Tug parked near CRJ9 observed to be leaking oil/hydraulic fluid	Confirmation of issue(s) resolution received on 3/28/14.
<u>2:15</u>				Email was sent to Delta Airlines. Area was cleaned and tug removed for repairs.
03/17/14	Trash	Delta Airlines – Commuter Terminal General	Refuse bag observed to be stored on tug parked near CRJ9. Bag leaking unknown fluids.	Confirmation of issue(s) resolution received on 3/28/14.
2:15				Email was sent to Delta Airlines. Tug was removed for repairs and employees briefed to properly dispose of trash.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
03/17/14 2:15 □ AM	Trash	Delta Airlines – Cargo Building	Trash can in cargo area observed to be uncovered.	Confirmation of issue(s) resolution received on 3/28/14. Email was sent to Delta Airlines.
■ PM 03/17/14	Oil spill/absorbent	Delta Airlines –	Used absorbent material observed under Delta vehicle.	Trash can and lid were replaced Confirmation of issue(s)
03/11/14	On spin/absorbent	Cargo Building	Osed absorbent material observed under Deita venicle.	resolution received on 3/28/14.
<u>2:15</u>				Email was sent to Delta Airlines. Absorbent was cleaned and drip pan placed under vehicles.
03/17/14	Trash	Flagship – Trash/Recycling Area	Cans and other recyclables observed to be stored outside compactors.	Confirmation of issue(s) resolution received on 4/3/14.
<u>2:20</u>				Email was sent to Flagship. Area was cleaned, although bags in question belong to airlines. Flagship will monitor for improper disposal.
03/17/14	Trash	Flagship – Terminal 2 General	Terminal 2 waiting area and Terminal 2 ashtrays waste observed to be overflowing.	Confirmation of issue(s) resolution received on 4/3/14.
2:20 □ AM ■ PM				Email was sent to Flagship. This is an ongoing issue and trashcans are monitored regularly

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD	SOURCE AND LOCATION OF UNAUTHORIZED NSWD EXAMPLE: NW Corner of	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
03/17/14	Water Animal Waste	Parking Lot Flagship – Terminal 2 General	Animal waste observed in animal relief area in Terminal 2.	Confirmation of issue(s) resolution received on 4/3/14.
<u>2:20</u>				Email was sent to Flagship. This is an ongoing issue. Flagship monitors area regularly, and bags are provided for passenger use.
<u>03/17/14</u>	Trash	Flagship – Parking Lot	Dumpsters near west wing offices observed to be overflowing and cannot close.	Confirmation of issue(s) resolution received on 4/3/14.
<u>2:20</u>				Email was sent to Flagship. Flagship reports overflowing dumpsters to Republic for disposal.
03/17/14	Trash	Southwest Airlines – Terminal 1 General	Waste containers observed to be overflowing near Gate 1A.	Confirmation of issue(s) resolution received on 4/28/14.
<u>2:21</u>				Email was sent to Southwest Airlines. Ramp Supervisors will ensure all trash cans are emptied daily.
03/17/14	Lavatory waste	Southwest Airlines – Terminal 1 General	Lavatory truck near gate 1A observed to have hose not fully drained.	Confirmation of issue(s) resolution received on 5/29/14.
2:21 □ AM ■ PM				Email was sent to Southwest Airlines. Lavatory truck cleaned and stowed.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>03/17/14</u> 2:21 □ AM	Improper storage	Southwest Airlines – Cargo Building	Materials observed to be stored outside without cover.	Confirmation of issue(s) resolution received on 5/29/14. Email was sent to Southwest
<u>03/17/14</u> PM	Oil spill	Southwest Airlines – Cargo Building	Vehicles for Southwest subtenant Executive Air parked near cargo area observed to be leaking fluids.	Airlines. Area has been cleaned. Confirmation of issue(s) resolution received on 06/19/14.
<u>2:21</u>				Email was sent to Southwest Airlines. Recent inspections show no indication of leaking equipment.
<u>03/17/14</u>	Improper storage	Southwest Airlines – Cargo Building	Fueling container stored outside behind fence adjacent to compactors.	Confirmation of issue(s) resolution received on 06/19/14.
<u>2:21</u>				Email was sent to Southwest. Secondary containment was ordered for all deicing fluid.
03/17/14	Sediment	Southwest Airlines – Cargo Building	Sediment accumulation around storm drains in Southwest cargo loading bay (front of house).	Confirmation of issue(s) resolution received on 06/19/14.
2:21 □ AM ■ PM				Email was sent to Southwest Airlines. Cargo leader advised of expectation in area. Recent inspections show the area is clean.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD	SOURCE AND LOCATION OF UNAUTHORIZED NSWD EXAMPLE: NW Corner of	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>03/17/14</u> <u>3:19</u>	Water Lavatory fluid	Parking Lot Hawaiian Airlines – Terminal 2	Hose on APS lavatory equipment observed to not be fully drained. Cart parked in shared area near Gate 22. Unclear if lavatory truck used to service Volaris or Hawaiian; neither aircraft on site at time of inspection.	Confirmation of issue(s) resolution received on 6/24/14. Email was sent to Hawaiian Airlines. Equipment has been appropriately maintained.
<u>03/17/14</u> <u>3:23</u>	Improper storage	American Airlines – Cargo Building	Potentially hazardous materials (batteries) observed to be stored outside without cover.	Confirmation of issue(s) resolution received on 4/14/14. Email was sent to American Airlines. Batteries were removed and the area cleaned.
0 <u>3/17/14</u> 3:23 □ AM ■ PM	Trash	American Airlines – Cargo Building	Trash accumulated in multiple locations in cargo area.	Confirmation of issue(s) resolution received on 4/14/14. Email was sent to American Airlines. The area was cleaned and debris removed.
03/17/14 3:23 □ AM ■ PM	Oil spill	American Airlines – Cargo Building	Multiple leaking vehicles observed in cargo area. Absorbent used, but not swept after use.	Confirmation of issue(s) resolution received on 4/14/14. Email was sent to American Airlines. Absorbent was swept up and disposed of.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
03/17/14	Oil spill	American Airlines – Terminal 2	Leaking vehicle observed to be parked between gates 31 and 32.	Confirmation of issue(s) resolution received on 06/17/14.
<u>3:23</u>	<u></u>			Email was sent to American Airlines. A bolt on the vehicle was tightened and leak repaired.
<u>03/18/14</u>	Oil spill	ASIG – Fueling Area	Spilled fuel from fueling nozzle observed in ASIG area near cargo building.	Confirmation of issue(s) resolution received on 06/27/14.
<u>9:36</u> ■ AM □ PM				Email was sent to ASIG. The fueling nozzle was replaced and spills cleaned.
<u>03/18/14</u>	Trash	ASIG – Fueling Area	Trash can observed to be uncovered.	Confirmation of issue(s) resolution received on 06/27/14.
<u>9:36</u> ■ AM □ PM				Email was sent to ASIG. All waste containers covered or moved indoors.
03/18/14	Oil spill	ASIG – Fueling Area	Fresh oil stains observed in ASIG parking area.	Confirmation of issue(s) resolution received on 06/27/14.
9:36 ■ AM □ PM				Email was sent to ASIG. Leak found in truck steering column. Leak fixed and stains cleaned.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>03/18/14</u> <u>10:33</u> ■ AM □ PM	Oil stains	Alaska Airlines – Gate 14	Fresh oil stains observed at Gate 14 following aircraft departure. Tugs observed in proximity to oil.	Confirmation of issue(s) resolution received on 03/26/14. Email was sent to Alaska Airlines. GSE to complete inspection of all ground equipment and repair leaks.
0 <u>3/18/14</u> 10:33 ■ AM □ PM	Oil spill	Alaska Airlines – Gate 20	Significant oil leaks/stains from tug observed at Gate 20. JAL flight was observed parked at gate 20 immediately prior to inspection, however operational area is shared between multiple airlines. Origin of leak not observed.	Confirmation of issue(s) resolution received on 3/26/14. Email was sent to Alaska Airlines. GSE to complete inspection of all ground equipment and repair leaks.
03/18/14 11:00 ■ AM □ PM	Oil stain	Air Canada/Jazz Airlines – Gate 20	Recent oil stains observed at Gate 20. JAL flight was observed parked at gate 20 immediately prior to inspection, however operational area is shared between multiple airlines. Origin of leak not observed.	Confirmation of issue(s) resolution received on 06/04/14. Email was sent to Air Canada. Area inspected on 05/20/14 and no leaks or fresh stains observed.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>03/18/14</u> <u>11:00</u> ■ AM □ PM	Lavatory waste	Volaris Airlines – Terminal 2	APS lavatory vehicle hoses not drained. Vehicle parked in shared location near Gate 22. It is unclear whether the vehicle serviced Volaris or Hawaiian, as neither aircraft was onsite at the time of the inspection.	Confirmation of issue(s) resolution received on 04/14/14. Email was sent to Volaris. Hose has been replaced and waste is in tank as required.
03/18/14 11:00 ■ AM □ PM	Oil stain	Volaris Airlines – Gate 20	Recent oil stains observed at Gate 20. JAL flight was observed parked at gate 20 immediately prior to inspection, however operational area is shared between multiple airlines. Origin of leak not observed.	Confirmation of issue(s) resolution received on 04/14/14. Email was sent to Volaris. Equipment was inspected to ensure no fluid leaks.
03/18/14 11:38 ■ AM □ PM	Trash	United Airlines – Terminal 2	Trash containers uncovered near gates 44 and 38.	Confirmation of issue(s) resolution received on 04/14/14. Email was sent to United. A new trashcan with a lid was ordered and in the meantime the trash can was emptied.
03/18/14 11:38 ■ AM □ PM	Oil spill	United Airlines – Terminal 2	Vehicle parked near gate 42 leaking fluids.	Confirmation of issue(s) resolution received on 04/14/14. Email was sent to United. The vehicle was inspected for leaks. Drip pans may be purchased.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>03/18/14</u> <u>11:38</u> ■ AM □ PM	Improper storage	United Airlines – Terminal 2	Materials observed to be stored under stairwell near gate 38 without secondary containment.	Confirmation of issue(s) resolution received on 04/14/14. Email was sent to United. Materials belong to an Airport contractor, not United. United moved items under cover.
<u>03/18/14</u> <u>11:38</u> ■ AM □ PM	Trash	United Airlines – Terminal 2	Blue liquid observed on ground in United operations area between gates 44 and 45. Liquid was near but not adjacent to parked lavatory vehicle; there was no obvious spill from lavatory vehicle.	Confirmation of issue(s) resolution received on 04/14/14. Email was sent to United. The area was cleaned and employees briefed on BMPs.
03/18/14 11:56 ■ AM □ PM	Trash	US Airways – Terminal 2	FOD bucket and dumpster observed to be uncovered.	Confirmation of issue(s) resolution received on 04/11/14. Email was sent to US. Bucket and dumpster were covered.
03/18/14 11:56 ■ AM □ PM	Improper storage	US Airways – Terminal 2	Potentially significant materials observed stored outside of materials container near gate 34.	Confirmation of issue(s) resolution received on 04/11/14. Email was sent to US. Materials were moved.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
03/18/14 12:55 □ AM ■ PM	Oil stain	West Jet – Gate 20	Recent oil stains observed at Gate 20. JAL flight was observed parked at gate 20 immediately prior to inspection, however operational area is shared between multiple airlines. Origin of leak not observed.	Confirmation of issue(s) resolution received on 06/04/14. Email was sent to West Jet. Area inspected on 05/20/14 and no leaks or fresh stains observed.
0 <u>3/18/14</u> 1:00 □ AM ■ PM	Trash	British Airways Airlines – Gate 20	Trash accumulated behind ATS vehicles near gate 20. Unclear if trash originated with JAL or British Airways operations. ATS is subtenant to both airlines.	Confirmation of issue(s) resolution received on 06/04/14. Email was sent to British Airways. Area inspected on 5/20/14 and no trash or debris were present.
03/18/14 1:00 □ AM ■ PM	Oil stain	British Airways Airlines – Gate 20	Recent oil stains observed at Gate 20. JAL flight was observed parked at gate 20 immediately prior to inspection, however operational area is shared between multiple airlines. Origin of leak not observed.	Confirmation of issue(s) resolution received on 06/04/14. Email was sent to British Airways. Area inspected on 05/20/14 and no leaks or fresh stains observed.
03/18/14 1:00 □ AM ■ PM	Trash	Japan Airlines – Gate 20	Trash accumulated behind ATS vehicles near gate 20. Unclear if trash originated with JAL or British Airways operations. ATS is subtenant to both airlines.	Confirmation of issue(s) resolution received on 04/28/14. Email was sent to JAL. The vehicles were relocated and area was cleaned.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
03/18/14 <u>1:00</u>	Oil Stain	Japan Airlines – Gate 20	Recent oil stains observed at Gate 20. JAL flight was observed parked at gate 20 immediately prior to inspection, however operational area is shared between multiple airlines. Origin of leak not observed.	Confirmation of issue(s) resolution received on 04/28/14. Email was sent to JAL. Ground equipment was inspected for leaks.
<u>03/19/14</u> <u>10:32</u> ▲ AM □ PM	Sediment	Elite Line Services – Storage Area	Accumulated sediment observed in ELS storage area in North ramp near Boneyard.	Confirmation of issue(s) resolution received on 04/11/14. Email was sent to ELS. Area was swept.
03/19/14 10:32 ■ AM □ PM	Trash	Elite Line Services – Storage Area	Waste stored improperly in ELS storage area.	Confirmation of issue(s) resolution received on 04/11/14. Email was sent to ELS. All waste was disposed of.
03/19/14 10:32 ■ AM □ PM	Improper storage	Elite Line Services – Storage Area	Stored materials observed to be uncovered in north ramp ELS storage area. Some tarps used, but others are disintegrating. Tires uncovered and deteriorating. Metal materials uncovered.	Confirmation of issue(s) resolution received on 04/11/14. Email was sent to JAL. Materials covered or disposed of.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>03/19/14</u> <u>10:32</u> ■ AM □ PM	Improper storage	Elite Line Services – Storage Area	Vehicles stored in north ramp ELS storage area appear inoperable.	Confirmation of issue(s) resolution received on 04/11/14. Email was sent to JAL. Disposal of first vehicle completed, disposal of second vehicle initiated.
03/19/14 12:30 □ AM ■ PM	Trash	ARFF – ARFF Station	Accumulated trash observed along fence line.	Confirmation of issue(s) resolution received on 06/20/14. A work order was submitted and trash removed.
<u>03/19/14</u> <u>12:30</u>	Improper storage	ARFF – ARFF Station	Tires observed to be stored without cover.	Confirmation of issue(s) resolution received on 06/20/14. A work order was submitted and tires removed by Ocean Blue.
03/24/14 12:00 □ AM ■ PM	Improper storage	Landmark Aviation – North Ramp	Improper cover utilized in used oil storage area. Tarp observed to be torn and does not provide protection from storm water contact.	Confirmation of issue(s) resolution received on 06/17/14. Email was sent to Landmark. Cover was replaced.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
03/24/14	Improper storage	Landmark Aviation – North Ramp	Hazardous waste container (used absorbents pads) observed not sealed or under cover.	Confirmation of issue(s) resolution received on 06/17/14.
<u>12:00</u>				Email was sent to Landmark. Containment (larger, sealing drum) provided.
03/24/14	Trash	Landmark Aviation – North Ramp	Waste container and used absorbent container observed to be uncovered.	Confirmation of issue(s) resolution received on 06/17/14.
<u>12:00</u>				Email was sent to Landmark. Absorbent disposed of and waste container placed under cover.
03/24/14	Sediment	Landmark Aviation – North Ramp	Sediment and trash accumulations observed behind and in front of maintenance building.	Confirmation of issue(s) resolution received on 06/17/14.
<u>12:00</u>				Email was sent to Landmark. Area is swept weekly.
03/24/14	Oil spill	Landmark Aviation – North Ramp	Oil/fluid leaks observed from multiple vehicles.	Confirmation of issue(s) resolution received on 06/17/14.
12:00 □ AM ■ PM				Email was sent to Landmark. Vehicle was removed from service and drip pans placed under trucks.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
03/24/14 <u>1:15</u> □ AM ■ PM	Trash	Bradford – North Ramp	Minor trash/debris observed in Bradford loading dock area.	Confirmation of issue(s) resolution received on 03/24/14. Issue was resolved on site. Area swept.
<u>03/24/14</u> <u>1:15</u>	Oil stain	Bradford – North Ramp	Spotting from vehicle oil/fluid leaks observed in front-of- house loading dock area. Bradford vehicles do not operate in this area; leaks likely originating from off-site vendors.	Confirmation of issue(s) resolution received on 04/11/14. Email was sent to Bradford. A spill kit was posted in the loading area and staff was trained in its use.
03/24/14 <u>1:30</u>	Trash	FedEx – North Ramp	Waste containers observed to be uncovered in package sorting area and vehicle maintenance area.	Confirmation of issue(s) resolution received on 6/25/14. Email was sent to FedEx. All containers were covered and new containers were ordered.
03/24/14 1:30 □ AM ■ PM	Oil stain	FedEx – North Ramp	Fresh oil stains observed in office and maintenance area. No associated vehicles could be determined.	Confirmation of issue(s) resolution received on 6/25/14. Email was sent to FedEx. Oil stains have been cleaned, and use of new drip pans has been implemented to avoid further leaks.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>03/24/14</u>	Improper Storage	FedEx – North Ramp	Outdoor storage area near FedEx vehicle maintenance area observed to be uncovered.	Confirmation of issue(s) resolution received on 6/25/14.
<u>1:30</u>				Email was sent to FedEx. The area has been cleared of stored materials.
03/24/14	Oil spill	UPS – North Ramp	At least two leaking vehicles observed in UPS operational area.	Confirmation of issue(s) resolution received on 04/11/14.
<u>1:50</u>				Email was sent to UPS. The spills were cleaned with dry methods and drip pans were used under the leaking vehicles.
03/24/14	Oil Spill	DHL – North Ramp	Leaking vehicles and oil/fluid stains observed in DHL operational area.	Confirmation of issue(s) resolution received on 04/03/14.
2:10 □ AM ■ PM				Email was sent to DHL. The area was cleaned and a pan placed under the leaking maintenance truck.
03/24/14	Trash/sediment	ACE – Parking Lot	Trash and sediment observed around Terminal 2 parking lot trash bins.	Confirmation of issue(s) resolution received on 04/14/14.
2:30 □ AM ■ PM				Email was sent to ACE. Dumpster areas cleaned and debris removed.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
03/24/14 2:30 □ AM ■ PM	Sediment	ACE – Parking Lot	Accumulated sediment and plant debris observed near and in storm drains in Terminal 1 parking lot.	Confirmation of issue(s) resolution received on 04/14/14. Email was sent to ACE. Leaves, sediment and debris have been
<u>03/24/14</u> <u>2:30</u>	Oil stain	ACE – Parking Lot	Large oil spotting observed in east end of Terminal 1 parking lot.	removed. Confirmation of issue(s) resolution received on 04/14/14. Email was sent to ACE. Absorbent material has been used to clean oil spot.
05/19/14 7:30 ■ AM □ PM	Sediment	Bradford – Other	Small amounts of sediment, associated with high winds were observed, one day after thorough sweeping.	Confirmation of issue(s) resolution received on 05/19/14. Issue resolved on site. Tenant provided documentation showing that sweeping was performed the day prior.
05/19/14 10:00 ■ AM □ PM	Trash	US Airways – Gate	FOD container was observed without a lid. Tenant representative removed bucket from gate and indicated that new FOD containers have been ordered (FOD bag with velcro).	Confirmation of issue(s) resolution received on 05/19/14. Issue was resolved on site. Tenant representative removed bucket from gate and indicated that new FOD containers have been ordered.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
05/19/14 10:00 ■ AM □ PM	Oil stain	US Airways – Gate	Fresh oil spots were observed at gate.	Confirmation of issue(s) resolution received on 06/10/14. Email was sent to US Airways. Spots were cleaned and future spots to be reported to ASIG as needed for cleanup.
05/19/14 10:32 ■ AM □ PM	Oil stain	American Airlines – Gate	Spilled oil, with accumulated sediment, was observed under equipment. During inspection ATS was notified of issue and identifed that issue would be resolved later that day.	Confirmation of issue(s) resolution received on 06/10/14. During inspection ATS was notified of issue and identified that issue would be resolved later that day. Spill oil was cleaned.
05/19/14 11:50 ■ AM □ PM	Trash	Hawaiian Airlines – Gate	Accumulated FOD was observed in Gate area.	Confirmation of issue(s) resolution received on 6/24/14. Email was sent to Hawaiian. Area has been cleaned and FOD has been properly disposed.
05/19/14 11:50 ■ AM □ PM	Improper storage	Hawaiian Airlines – Gate	Tug was observed to have a flat tire. If equipment is not operational and no longer in use it is recommended that this be disposed of. If it requires maintenance, then maintenance should be performed.	Confirmation of issue(s) resolution received on 6/24/14. Email was sent to Hawaiian. The tug has been repaired and is in proper operational condition.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>05/19/14</u> <u>11:50</u> ■ AM □ PM	Oil spill	Hawaiian Airlines – Terminal 2	Hawaiian vehicle was observed to be leaking. Clean spilled oil and properly dispose of. Maintain vehicle in good operating condition.	Confirmation of issue(s) resolution received on 6/24/14. Email was sent to Hawaiian. Spill has been properly cleaned, and vehicle confirmed to be in good operating condition.
<u>05/19/14</u> <u>12:23</u>	Oil spill/Sediment	American Eagle Airlines – Commuter Terminal	Spill kit was observed without a cover and stored incorrectly. Clean and properly dispose. American Eagle representative highlighted that this issue would be addressed after the inspection.	Confirmation of issue(s) resolution received on 06/10/14. Email was sent to American Eagle. Spill kit was removed and disposed of.
<u>05/20/14</u> <u>9:33</u> ■ AM □ PM	Trash	West Jet Airlines – Gate	FOD container was observed to be full.	Confirmation of issue(s) resolution received on 05/20/14. Issue was resolved on site. FOD container was emptied by ramp personnel.
05/20/14 10:39 ■ AM □ PM	Oil stains	Virgin America Airlines – Gate	Oil stains were observed at the gate.	Confirmation of issue(s) resolution received on 06/17/14. Email was sent to Virgin America. Area was cleaned and the leaking equipment sent to repair facility and fixed.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
05/20/14 11:49 ■ AM □ PM	Oil stains	Spirit Airlines – Gate	Oil stains were observed at the gate.	Confirmation of issue(s) resolution received on 05/29/14. Email was sent to Spirit. GAT (subtenant) instructed to immediately clean oil stains.
<u>05/20/14</u> <u>12:31</u>	Oil stains	Frontier Airlines – Gate	Oil stains were observed at the gate.	Confirmation of issue(s) resolution received on 06/10/14. Email was sent to Frontier. Vehicles were inspected for leaks and none were found. Stains were cleaned.
05/20/14 2:38 □ AM ■ PM	Trash/sediment	Southwest Airlines – Cargo Gate	Accumulated debris from pallets was observed at the loading dock.	Confirmation of issue(s) resolution received on 6/24/14. Email was sent to Southwest. Debris has been removed and staff has been instructed to monitor and clean as necessary.
05/20/14 2:38 □ AM ■ PM	Improper storage	Southwest Airlines – Maintenance	Equipment belonging to subcontrator (PAM) appears to be inoperable and not functioning.	Confirmation of issue(s) resolution received on 6/24/14. Email was sent to Southwest. Equipment has been removed.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
05/20/14	Trash/sediment	Southwest Airlines – Gate	Accumulated trash and debris was observed in the area.	Confirmation of issue(s) resolution received on 05/20/14.
<u>2:38</u>				Issue resolved on site. Southwest representative instructed crew members to address immediately.
05/20/14	Trash	Alaska Airlines – Gate	Trash container was observed without a cover.	Confirmation of issue(s) resolution received on 06/10/14.
<u>3:37</u>				Email was sent to Alaska. Tenant reviewed requirements with ramp vendor to ensure all trash containers have lids.
05/20/14	Sediment	Alaska Airlines – Terminal 2	Sediment observed adjacent to luggage area in T2.	Confirmation of issue(s) resolution received on 06/10/14.
<u>3:37</u>				Email was sent to Alaska. Tenant reviewed requirements with vendor to ensure area is cleaned nightly.
05/21/14	Oil stain	Delta Airlines – Gate	Hydraulic oil spots were observed on the ramp.	Confirmation of issue(s) resolution received on 06/04/14.
9:16				Email was sent to Delta. The leadership team was briefed on importance of cleaning spills.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
05/21/14 9:16 ■ AM □ PM	Oil spill	Delta Airlines – Gate	ASIG operations were observed within gate area. Leaking oil from the truck was observed after the truck had left the area.	Confirmation of issue(s) resolution received on 05/21/14. Issue was resolved on site. Staff informed by Delta representative to inspect fueling operations.
<u>05/21/14</u> <u>9:16</u> ■ AM □ PM	Trash	Delta Airlines – Terminal 2	Accumulated trash was observed behind the ice machine.	Confirmation of issue(s) resolution received on 06/04/14. Email was sent to Delta. Area was swept immediately and will continue to be cleaned as needed.
05/21/14 3:00 □ AM ■ PM	Trash	Jet Blue Airlines – Gate	Minor accumulated trash was observed behind the ice chest.	Confirmation of issue(s) resolution received on 05/21/14. Issue was resolved on site. Area cleaned.
05/22/14 7:30 ■ AM □ PM	Improper storage/Sediment	Allied Aviation – North Ramp	Equipment does not appear to be operational and is not properly covered. Additional sweeping should be performed in the area.	Confirmation of issue(s) resolution received on 06/27/14. Email was sent to Allied. Area was re-inspected on 06/27/14 and equipment had been covered and area swept.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
05/22/14 7:30 ▲ AM	Improper storage	Allied Aviation – North Ramp	Equipment was not observed under complete cover.	Confirmation of issue(s) resolution received on.06/27/14. Email was sent to Allied. Area
PM	Improper storage	ARFF – ARFF Station	Foam material was observed to be stored outside without proper cover or secondary containment.	was re-inspected on 06/27/14 and equipment had been covered. Confirmation of issue(s) resolution received on 06/20/14.
8:46 ■ AM □ PM				Email was sent to ARFF. Drums were in active use for monthly foam testing.
<u>05/22/14</u>	Trash	ARFF – ARFF Station	Accumulated FOD was observed on the fence, adjacent to the storage area.	Confirmation of issue(s) resolution received on 06/20/14.
8:46				Email was sent to ARFF. Area was cleaned.
05/22/14	Improper storage	ARFF – ARFF Station	Tires stored outdoors were observed to be on a pallet but uncovered.	Confirmation of issue(s) resolution received on 06/20/14.
8:46				Email was sent to ARFF. Area was cleaned per email from Ocean Blue.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD	SOURCE AND LOCATION OF UNAUTHORIZED NSWD	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED
	EXAMPLE: Vehicle Wash Water	EXAMPLE: NW Corner of Parking Lot		NSWD ELIMINATION DATE.
<u>05/22/14</u>	Fuel spill	Landmark Aviation – North Ramp	Fuel truck hose cap was observed to be broken causing the equipment to leak.	Confirmation of issue(s) resolution received on 06/10/14.
<u>9:30</u> ■ AM □ PM				Email was sent to Landmark. Leak originated from seal in meter and was repaired.
<u>05/22/14</u>	Sediment	Landmark Aviation – North Ramp	Accumulated sediment was observed adjacent to maintenance shop.	Confirmation of issue(s) resolution received on 06/10/14.
9:30 AM				Email was sent to Landmark. Area is cleaned weekly.
<u>05/22/14</u>	Oil stain	Landmark Aviation – North Ramp	Spilled oil has absorbed into the asphalt.	Confirmation of issue(s) resolution received on 06/10/14
<u>9:30</u> ■ AM □ PM				Email was sent to Landmark. Area was cleaned and spill clean up procedures reviewed.
05/22/14	Lavatory waste	DHL – North Ramp	Equipment was observed to be leaking. Clean and properly dispose of leaked material. Inspect and maintain equipment frequently.	Confirmation of issue(s) resolution received on 6/24/14.
11:30				Email was sent to DHL. All equipment was moved and the area cleaned.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
<u>05/22/14</u> <u>11:30</u> ■ AM □ PM	Trash/sediment	DHL – North Ramp	Accumulated sediment was observed behind DHL trailer.	Confirmation of issue(s) resolution received on 6/24/14. Email was sent to DHL. The area has been cleaned and area is monitored daily for issues.
<u>05/23/14</u> <u>11:29</u> ■ AM □ PM	Trash	FedEx – North Ramp	Accumulated trash and debris was observed adjacent to the hazardous material storage area, beneath and behind the trailer, and between Conex units.	Confirmation of issue(s) resolution received on 06/20/14 Email was sent to FedEx. All trash/debris removed and area cleaned weekly.
05/23/14 11:29 □ PM	Improper storage	FedEx – North Ramp	Inoperable equipment was observed on-site.	Confirmation of issue(s) resolution received on 05/23/14. Representative indicated that Corporate offices have authorized the disposal of larger equipment. Currently a recycling company is being identified.
05/23/14 11:29 ■ AM □ PM	Improper storage	FedEx – North Ramp	Weathered supplies/equipment observed to be staged outside.	Confirmation of issue(s) resolution received on 06/20/14 Email was sent to FedEx. Representative indicated that unneeded supplies would be disposed of immediately.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
05/23/14 <u>1:00</u>	Trash/sediment	ACE – Parking Lot	Accumulated trash and debris was observed in the Long Term Parking Lot.	Confirmation of issue(s) resolution received on 06/10/14 Email was sent to ACE. Areas in long term lot have been cleaned.
05/29/14 8:00 ■ AM □ PM	Water source	SDCRAA – North Ramp	Hose bibs with active hoses were observed without posted signs. UPS disconnected their hose and removed after inspection.	Work order submitted 06/10/14. Signs will be placed adjacent to active hose bibs.
05/29/14 8:00 ■ AM □ PM	None (Missing BMP)	SDCRAA – Storage Area	Generator Area. Stenciling is no longer legible.	Work order submitted 06/10/14. Storm drains will be re-stenciled.
05/29/14 8:00 ■ AM □ PM	Sediment	SDCRAA – Other	Airport wide. Multiple storm drains (T2, Triturator, Compactor) were observed to have accumulated debris.	Work order submitted 06/10/14. Storm drains will be cleaned.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
05/29/14 8:00 ■ AM □ PM	Improper storage	SDCRAA – Storage Area	Generator Area. Tire on pull tog was observed to be deflated.	Work order submitted 06/10/14. Equipment will be fixed or disposed of.
05/29/14 8:00 ■ AM □ PM	Improper storage	SDCRAA – Storage Area	Bone Yard. Unused equipment is stored without proper cover.	Work order submitted 06/10/14. Equipment will be covered or disposed of.
05/29/14 8:00 ■ AM □ PM	Improper storage	SDCRAA – Storage Area	Bone Yard. Batteries were not observed to be stored under cover or within secondary containment.	Work order submitted 06/10/14. Batteries will be properly covered and contained or recycled.
05/29/14 8:00 ■ AM □ PM	Improper storage	SDCRAA – Storage Area	Bone Yard. Non- hazardous waste was observed to be stored in this area without cover. Additionally, labels did not have an accumulation start date.	Work order submitted 06/10/14. Waste will be covered and labeled.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
05/29/14 8:00 ■ AM □ PM	Water source	SDCRAA – Terminal 2	Dewatering system near Gate 26, was observed to be leaking more than usual during other Tenant inspections. During inspection the area was dry.	Work order submitted 06/10/14. Maintenance will continue to monitor dewatering system.
05/29/14 8:00 ■ AM	Trash	SDCRAA – Other	Triturator. Improper storage of trash was observed in the area.	Work order submitted 06/10/14. Area will be cleaned.
05/29/14 8:00 ■ AM □ PM	Improper storage	SDCRAA – Other	Tenant operational areas. Old equipment was observed to be stored within ACE and Fedex operational areas.	Work order submitted 06/10/14. Equipment will be moved and covered or disposed of.
05/29/14 8:00 ■ AM □ PM	Improper storage	SDCRAA – Trash/Recycling Area	Behind Compactor Dumpsters, Cargo Building/Terminal 1. Unused equipment was observed stored adjacent to a storm drain.	Work order submitted 06/10/14. Equipment will be moved and covered or disposed of.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
05/29/14 8:00 ■ AM	Sediment/Trash	SDCRAA – Trash/Recycling Area	Compactor Dumpsters, Cargo Building/Terminal 1. Area below berm is observed to have accumulated sediment and trash. Clean and properly dispose.	Work order submitted 06/10/14. Area will be cleaned.
05/29/14 8:30 ■ AM □ PM	Sediment	Elite Line Services – Other	Terminal 1 Baggage Area. Area beneath conveyer belt was observed to have accumulated waste.	Confirmation of issue(s) resolution received on 6/25/14. Email was sent to ELS. Area has been cleaned.
05/29/14 8:30 ■ AM □ PM	Improper storage.	Elite Line Services – North Ramp	Inoperable equipment was observed. Representative indicated that this equipment will be removed from airport operations within the next 3 months.	Confirmation of issue(s) resolution received on 05/29/14. Resolved on site. Representative indicated that this equipment will be removed from airport operations within the next 3 months.
05/29/14 8:30 ■ AM □ PM	Improper storage.	Elite Line Services – North Ramp	Tires were observed on pallets - need to be covered.	Confirmation of issue(s) resolution received on 6/25/14. Email was sent to ELS. Tires were removed as of 6/17/14.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
0 <u>5/30/14</u> AM ■ □PM	Oil spill	ASIG - Gate	ASIG operations (truck 20) were observed on 5/21/14 within gate 48. Leaking oil from the truck was observed after the truck had left the area.	Confirmation of issue(s) resolution received on 05/30/14. ASIG was informed of the leaks. ASIG representative indicated that truck was maintained after this issue was identified.
05/30/14 AM ■ □PM	Improper storage	ASIG - Maintenance	55 gallon drums of dry asphalt were observed to be stored outdoors without cover or labeled.	Confirmation of issue(s) resolution received on 06/27/14 Email was sent to ASIG. The drums were moved inside a container and labeled.
05/30/14 AM ■ □PM	Trash	ASIG – Maintenance	Trash receptacle was observed to be without cover.	Confirmation of issue(s) resolution received on 06/27/14. Email was sent to ASIG. All trash receptacles were moved inside or covered.
05/30/14 8:14 AM ■ □ PM	Oil Stains	ASIG – Other	Parking Area. Continuous spotting was observed on concrete area. Fresh spots should be cleaned with absorbent to avoid future staining. It is recommended that power washing is performed in the area, taking appropriate measures to protect any storm drains in the area.	Confirmation of issue(s) resolution received on 06/27/14. Email was sent to ASIG. Fresh oil spots were cleaned and the area will be monitored frequently to avoid future staining.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
05/30/14	Trash	Flagship – Terminal 2	Recycling was observed to be overfilled near compactor area. Similar issue was observed in T2W near gate 40.	Confirmation of issue(s) resolution received on 5/30/14.
8:16 ■ AM □ PM				The issue was resolved on site. Representative contacted staff to clean area immediately.
05/30/14	Improper storage	United Airlines – Cargo Building	Propane gas can and cage was stored incorrectly.	Confirmation of issue(s) resolution received on 5/30/14.
8:16				The issue was resolved on site. Issue was communicated to staff, who began corrective action.
05/30/14	Improper storage	United Airlines – Cargo Building	Representative indicated that equipment was inoperable, and instructed maintenance staff to arrange for the disposal of unneeded equipment. An estimated date or time of	Confirmation of issue(s) resolution received on 06/27/14.
8:16 AM			disposal was not indicated.	Email was sent to United. United contacted a metals recycler to coordinate pick up of old equipment. Pick up is pending.
05/30/14	Trash/sediment	United Airlines – Cargo Building	Accumulated sediment, trash, and debris was observed.	Confirmation of issue(s) resolution received on 06/27/14.
8:16 AM				Email was sent to United. United agreed to sweep after materials were picked up by metals recycler.

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD EXAMPLE: Vehicle Wash Water	SOURCE AND LOCATION OF UNAUTHORIZED NSWD <u>EXAMPLE:</u> NW Corner of Parking Lot	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.	DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
05/30/14 8:16 ■ AM □ PM	Oil stain	United Airlines – Gate	Residue of spilled oil was observed at gate, although absorbent material had been used to collect spilled material. Due to continuous spotting in the area, the concrete has absorbed oil waste.	Confirmation of issue(s) resolution received on 06/27/14. Email was sent to United. Ramp personnel and mechanics were re-briefed on cleaning. Tenant contacted United HQ for more guidance on cleaning procedures.

2013-2014 ANNUAL REPORT FORM 4 – MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES

SIDE A

- Storm water discharge visual observations are required for at least one storm event per month between October 1 and May 31.
 - Visual observations must be conducted during the first hour of discharge
- at all discharge locations. Discharges of temporarily stored or contained storm water must be observed at the time of discharge.
- Indicate "None" in the first column of this form if you did not conduct a monthly visual observation.
 Make additional copies of this form as necessary.
- Until a monthly visual observation is made, record any eligible storm events that do not result in a storm water discharge and note the date, time, name, and title of who observed there was no storm water discharge.

	Drainage Location Description	Observation Time	Were Pollutants Observed
Observation Date: October 9, 2013	*C-B01-1a	5:25 P.M.	□ YES ■ NO
Observer's Name: Lijun Xu, Anna Wernet, &	C-B03-2	5:35 P.M.	■ YES □ NO
	C-B05-4	5:45 P.M	□ YES ■ NO
Inter- Consultant	*C-B06-5a	5:10 P.M.	□ YES ■ NO
	C-B07-6	6:02 P.M.	■ YES □ NO
lime Discharge Began: 10/09/13 5:03 PIM	C-B07-7	5:03 P.M.	VES DNO
Observation Lime: 5:03 PM - 6:02 PM	C-B08-8	5:12 P.M.	□ YES ■ NO
Were Pollutants Observed: Yes (If yes, complete reverse side)	*C-B12-9a	5:18 P.M.	■ YES □ NO
	*C-B09-10b	5:31 P.M.	■ YES □ NO
	Drainage Location Description	Observation Time	Were Pollutants Observed
Observation Date: November, 2013	*C-B01-1a	: A.M./P.M.	□ YES □ NO
Observer's Name; Annie Martin	C-B03-2	: A.M./P.M.	
Title: Senior Environmental Specjalist	C-B05-4	: A.M./P.M.	
Signature: 2 Signa	*C-B06-5a	: A.M./P.M.	D YES D NO
Time Discharge Began: None – no discharge during	C-B07-6	: A.M./P.M.	□ YES □ NO
aaylignt nours	C-B07-7	M (D M /D M	

Form 4 – page 1 of 9

N N N N

□ YES

A.M./P.M. A.M./P.M. A.M./P.M. A.M./P.M.

C-B07-7 C-B08-8 .. | ..

*C-B12-9a *C-B09-10b

Were Pollutants Observed: NA (If yes, complete reverse side)

Observation Time: NA

2013-2014	FORM 4-MONTHLY VISUAL OBSERVATIONS OF
ANNUAL REPORT	STORM WATER DISCHARGES

•

DESCRIBE ANY REVISED OR NEW BMPS AND THEIR DATE OF IMPI EMENTATION		NA	NA	NA	NA	NA	
IDENTIFY AND DESCRIBE SOURCE(S) OF POLLUTANTS		No source identified.	No source identified.	Source of sheen appeared to be upstream cargo and maintenance area.	No source identified.	No source identified.	
DESCRIBE STORM WATER DISCHARGE CHARACTERISTICS	Indicate whether storm water discharge is clear, cloudy, or discolored; causing staining; containing floating objects or an oil sheen, has odors, etc.	Discharge was brown and had a light oily sheen.	No flow observed at this station but foam was observed inside the manhole.	Discharge was brown and had an oily sheen.	Discharge contained suspended solids.	Discharge was brown and contained suspended solids.	
DRAINAGE AREA DESCRIPTION		C-B03-2	C-B07-6	C-B07-7	*C-B12-9a (alternate site used due to construction)	*C-B09-10b (alternate site used due to construction)	
DATE/TIME OF OBSERVATION	(From Heverse Sue)	<u>10/09/13</u> <u>5:35</u> □ AM ■ PM	<u>10/09/13</u> 6:02	<u>10/09/13</u> <u>5:03</u>	<u>10/09/13</u> <u>5:18</u> □ AM ■ PM	<u>10/09/13</u> <u>5:31</u>	<u>NA / /</u> am PM

Form 4 – page 2 of 9

SIDE B

2013-2014 ANNUAL REPORT FORM 4-MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES

Were Pollutants Observed ON D ON D ON M ON D ON D ON D ON D ON M ON [] ■ YES YES YES γES ■ YES YES □ YES □ YES ■ YES Observation Time Р.М. P.M. P.M. Р.М. P.M. P.M. Р.М. Ъ P.M. 2:11 2:32 2:13 2:30 2:07 1:59 2:20 2:00 2:15 Drainage Location Description *C-B09-10b *C-B01-1a C-B03-2 *C-B06-5a *C-B12-9a C-B05-4 C-B07-7 C-B08-8 C-B07-6 Observers Name: Anna Wernet & Alex Chin Time Discharge Began: 12/29/12 1:59 PM Observation Date: December 7, 2013 Observation Time: 1:59 PM - 2:32 PM Were Pollutants Observed: Yes (If yes, complete reverse side) 0250 Title: AMEC, Consult Signature:

	Drainage Location Description	Observation Time	Were Pollutants Observed	S Observed
Observation Date: January, 2013	*C-B01-1a	: A.M./P.M.	D YES	ON 🗆
Observer's Name: Annie Martin	C-B03-2	: A.M./P.M.	□ YES	
Title: Senior Environmental specialist	C-B05-4	: A.M./P.M.	C YES	ON 🗆
Signature:	*C-B06-5a	: A.M./P.M.	D YES	ON 🗆
agan: Nor	C-B07-6	: A.M./P.M.	□ YES	
daylight hours	C-B07-7	: A.M./P.M.	□ YES	
Observation 1 ime: NA	C-B08-8	. A.M./P.M.		
Were Pollutants Observed: NA (If yes, complete reverse side	*C-B12-9a	: A.M./P.M.	□ YES	ON 🗆
	*C-B09-10b	. A.M./P.M.	□ YES	

Form 4 – page 3 of 9

SIDE A

DESCRIBE ANY REVISED OR NEW BMPS AND THEIR DATE OF IMPLEMENTATION ¥ ٩V NA ¥Ζ ¥ ₹ IDENTIFY AND DESCRIBE SOURCE(S) OF POLLUTANTS separator in upstream area. Smell came from oil-water No source identified. Indicate whether storm water discharge is clear, cloudy, or discolored; causing staining; containing floating objects or an oil sheen, has odors, etc. Discharge contained suspended solids. Discharge contained suspended solids. DESCRIBE STORM WATER DISCHARGE CHARACTERISTICS Discharge was brown and associated with a rotten egg smell. Discharge was brown. Discharge was brown. Discharge was brown. (alternate site used due to construction) (alternate site used due to construction) DRAINAGE AREA DESCRIPTION *C-B01-1a *C-B06-5a C-B07-6 C-B03-2 C-B05-4 C-B07-7 DATE/TIME OF OBSERVATION (From Reverse Side) ЫΜ AM AM AM AΜ Ы МЧ AM AM МЧ ЫΜ Ы 12/7/13 12/7/13 12/7/13 12/7/13 12/7/13 12/7/13 2:13 1:59 2:00 2:20 2:07 2:11

SIDE B

. # .

DESCRIBE ANY REVISED OR NEW BMPS AND THEIR DATE OF IMPLEMENTATION ΝA IDENTIFY AND DESCRIBE SOURCE(S) OF POLLUTANTS No source identified. Indicate whether storm water discharge is clear, cloudy, or discolored; causing staining; containing floating objects or an oil sheen, has odors, etc. DESCRIBE STORM WATER DISCHARGE CHARACTERISTICS Discharge was brown and contained suspended solids. *C-B09-10b (alternate site used due to construction) DRAINAGE AREA DESCRIPTION DATE/TIME OF OBSERVATION (From Reverse Side) AM AM Ы AM РМ AM AM РМ РМ ЫΜ AM ЫΜ 12/7/13 2:15 AN NA / NA NA AN • • • • • •| • • ••

Form 4 – page 5 of 9

5 1

SIDE B

2013 – 2014 ANNUAL REPORT FORM 4 – MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES

	Drainage Location Description	Observation Time	Were Pollutants Observ	s Observ
Observation Date: February 6,2014	*C-B01-1a	: A.M. / PM	□ YES	ON 🗆
Observer's Name: Alex Chin	C-B03-2	: A.M. / PM	D YES	ON 🗆
Title: AMEC, Consultant	C-B05-4	: A.M. / PM	□ YES	
Signature:	*C-B06-5a	: A.M. / PM	D YES	ON 🗆
Time Discharge Began: 02/06/14 5:30 PM	C-B07-6	5:45 P.M.	■ YES	ON 🗆
Observation Time: 5:30 PM – 5:45 PM	C-B07-7	5:30 P.M.	T YES	ON 🗆
Were Pollutants Observed: Yes	C-B08-8	: A.M. / PM	□ YES	
(If yes, complete reverse side	*C-B12-9a	: A.M. / PM	D YES	ON 🗆
	*C-B09-10b	5;35 P.M.	□ YES	ON ■
	Drainage Location Description	Observation Time	Were Pollutants Observ	s Observ
Observation Date: March 2014	*C-B01-1a	: A.M. / PM	□ YES	ON 🗆
Observer's Name: Annie Martin	C-B03-2	: A.M. / PM	□ YES	ON 🗆

8 ON 🗆 ON D ON D ON D ON D ON □ ON D □ YES A.M. / PM . . • • •• ••• ••• *C-B09-10b *C-B12-9a *C-B06-5a C-B07-7 C-B07-6 C-B05-4 C-B08-8 Signature: Title: Senior Environmental Specialist Were Pollutants Observed: NA (If yes, complete reverse side Observation Time: NA

SIDE A

B

		STORIN WALER DISCRANGES	NGES	
DATE/TIME OF OBSERVATION	DRAINAGE AREA DESCRIPTION	DESCRIBE STORM WATER DISCHARGE CHARACTERISTICS	IDENTIFY AND DESCRIBE SOURCE(S) OF POLLUTANTS	DESCRIBE ANY REVISED OR NEW BMPS AND THEIR DATE OF IMPI FMFNTATION
(From Heverse Side)		Indicate whether storm water discharge is clear, cloudy, or discolored; causing staining; containing floating objects or an oil sheen, has odors, etc.		
<u>02/06/14</u> <u>5:45</u> □ AM ■ PM	C-B07-6	Discharge was brown and associated with a faint petroleum smell.	No source identified.	NA
02/06/14 5:30 a AM PM	C-B07-7	Discharge was brown and clear.	No source identified.	NA
NA / / 				
<u>NA / /</u>				
<u>NA / / </u>				•
<u>NA / / </u>				

2013 – 2014 ANNUAL REPORT FORM 4 – MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES

SIDE B

Form 4 – page 7 of 9

ANNUAL REPORT FORM 4 – MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES 2013 - 2014

	Drainage Location Description	Observation Time	Were Pollutants Observed
Observation Date: April 2, 2014	*C-B01-1a	7:24 A.M.	THE TO NO
Observer's Name: Lijun Xu & Mariamawit Yirsalign	C-B03-2	6:45 A.M.	■ YES □ NO
Title: AMEC, Cogsultant	C-B05-4	7:20 A.M.	■ YES □ NO
Signature: 172 - Hudden	*C-B06-5a	6:35 A.M.	□ YES ■ NO
Time Discharge Began: 04/02/2014 5:20 AM	C-B07-6	6:58 A.M.	🗆 YES 🔳 NO
	C-B07-7	7:10 A.M.	■ YES □ NO
Observation Time: 5:20 AM – 7:24 AM	Ċ-B08-8	5:30 A.M.	□ YES ■ NO
Were Pollutants Observed: NA (If yes, complete reverse side	*C-B12-9a	5:20 A.M.	□ YES ■ NO
	· *C-B09-10b	5:55 A.M.	■ YES □ NO
	Drainage Location Description	Observation Time	Were Pollutants Observed
Observation Date: May 2014	*C-B01-1a	: A.M. / PM	
Observers Name: Annie Martin	C-B03-2	: A.M. / PM	

ON D ON [] ON 🗆 ON D ON 🗆 ON [] D YES D YES D YES D YES □ YES □ YES TES A.M. / PM • • . . • • . . *C-B09-10b *C-B12-9a *C-B06-5a C-B07-6 C-B07-7 C-B08-8 C-B05-4 uninature: LLV もも KWARAN Time Discharge Began: None - no discharge during daylight hours Title: Senior Environmental Specialist Were Pollutants Observed: NA (If yes, complete reverse side) Observation Time: NA

Form 4 – page 8 of 9

SIDE A

r

2013 – 2014 ANNUAL REPORT

FORM 4 – MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES

DATE/TIME OF OBSERVATION	DRAINAGE AREA DESCRIPTION	DESCRIBE STORM WATER DISCHARGE CHARACTERISTICS	IDENTIFY AND DESCRIBE SOURCE(S) OF POLLUTANTS	DESCRIBE ANY REVISED OR NEW BMPS AND THEIR DATE OF
(From Reverse Side)		Indicate whether storm water discharge is clear, cloudy, or discolored; causing staining; containing floating objects or an oil sheen, has odors, etc.		
<u>04/02/14</u> 7:24 ■ AM □ PM	*C-B01-1 <i>a</i> (alternate site used due to construction)	Discharge is brown and cloudy.	No source identified.	NA
<u>04/02/14</u> <u>6:45</u> a AM D PM	C-B03-2	Discharge is cloudy.	No source identified.	AM
<u>04/02/14</u> 7:20 = AM D PM	C-B05-4	Discharge is brown and cloudy.	No source identified.	M
<u>04/02/14</u> 7:10 = AM DM	C-B07-7	Discharge is brown and cloudy.	No source identified.	AM
<u>04/02/14</u> <u>5:55</u> = AM PM	*C-B09-10b (alternate site used due to construction)	Discharge is brown and cloudy. Floatables (leaves and grass) observed.	No source identified.	NA
NA / / a MM PM				

SIDE B

Form 4 – page 9 of 9

2013-2014 Annual Report FORM 5 – ANNUAL COMPREHENSIVE SITE COMPLIANCE EVALUATION POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY BMP STATUS

TITLE: AMEC, Consultant	
INSPECTOR NAME: Anna Wernet	

	Y うしう
TUS	SIGNATURE:

POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) ACE	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED? Yes	If yes to either question, complete the next two columns of this	DESCRIBE DEFICIENCIES IN BMPS OR BMP IMPLEMENTATION Accumulated trash/sediment in parking lot. 	DESCRIBE ADDITIONAL/REVISED BMPs OR CORRECTIVE ACTIONS AND THEIR DATE(S) OF IMPLEMENTATION ACE was notified of the deficiency by e-mail.
(05/23/14)	ARE ADDITIONAL/REVISED BMPs NECESSARY? No	form.		Confirmation that all deficiencies were abated was received on 06/10/14.
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP)	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	If yes to either question, complete the	DESCRIBE DEFICIENCIES IN BMPs OR BMP IMPLEMENTATION	DESCRIBE ADDITIONAL/REVISED BMPs OR CORRECTIVE ACTIONS AND THEIR DATE(S) OF IMPLEMENTATION
Alaska Airlines	Yes	next two columns of this	 Trash container observed without lid. 	Alaska Airlines was notified of the deficiency
(05/20/14)	ARE ADDITIONAL/REVISED BMPs NECESSARY?	form.		by e-mail. Confirmation that all deficiencies were abated
	No			was received on 06/10/14.
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in vour SWPPP)	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	If yes to either question, complete the	DESCRIBE DEFICIENCIES IN BMPS OR BMP IMPLEMENTATION	DESCRIBE ADDITIONAL/REVISED BMPs OR CORRECTIVE ACTIONS AND THEIR DATE(S) OF IMPLEMENTATION
	Yes	next two columns of this	 Storage of items without cover/containment. 	Allied was notified of the deficiency by e-mail.
Allied Aviation (05/22/14)	ARE ADDITIONAL/REVISED BMPs NECESSARY?	form.	 Improper storage of inoperable equipment. 	A plan to abate all deficiencies was discussed with tenant via telephone on 6/24/14.
	No			The area was re-inspected on 6/27/14 and was found to be acceptable. Electronic
				confirmation that all deficiencies were abated will be completed prior to next quarterly inspection.

Page 1 of 8

EVALUATION DATE: May 2014

INSPECTOR NAME: Anna Wernet

TITLE: AMEC, Consultant

 DESCRIBE ADDITIONAL/REVISED BMPs OR CORRECTIVE ACTIONS AND THEIR DATE(S) OF IMPLEMENTATION American Airlines was notified of the deficiency by e-mail. Confirmation that all deficiencies were abated was received on 06/10/14. 	DESCRIBE ADDITIONAL/REVISED BMPS OR CORRECTIVE ACTIONS AND THEIR DATE(S) OF IMPLEMENTATION American Eagle Airlines was notified of the deficiency by e-mail. Confirmation that all deficiencies were abated was received on 06/10/14.	DESCRIBE ADDITIONAL/REVISED BMPs OR CORRECTIVE ACTIONS AND THEIR DATE(S) OF IMPLEMENTATION ARFF was notified of the deficiency by work order. Confirmation that all deficiencies were abated was received on 06/20/14.
 DESCRIBE DEFICIENCIES IN BMPs OR BMP IMPLEMENTATION Oil leaks observed from equipment. 	 DESCRIBE DEFICIENCIES IN BMPs OR BMP IMPLEMENTATION Absorbent material was being using improperly. 	 DESCRIBE DEFICIENCIES IN BMPs OR BMP IMPLEMENTATION Accumulated trash observed in operational area. Storage of items without cover/containment. Improper storage of tires.
If yes to either	If yes to either	If yes to either
question,	question,	question,
complete the	complete the	complete the
next two	next two	next two
columns of this	columns of this	columns of this
form.	form.	form.
HAVE ANY BMPs NOT BEEN FULLY	HAVE ANY BMPs NOT BEEN FULLY	HAVE ANY BMPs NOT BEEN FULLY
IMPLEMENTED?	IMPLEMENTED?	IMPLEMENTED?
Yes	Yes	Yes
ARE ADDITIONAL/REVISED BMPs	ARE ADDITIONAL/REVISED BMPs	ARE ADDITIONAL/REVISED BMPs
NG	NECESSARY?	NECESSARY?
NO	No	No
POTENTIAL POLLUTANT	POTENTIAL POLLUTANT	POTENTIAL POLLUTANT
SOURCE/INDUSTRIAL ACTIVITY AREA	SOURCE/INDUSTRIAL ACTIVITY AREA	SOURCE/INDUSTRIAL ACTIVITY AREA
(as identified in your SWPP))	(as identified in your SWPPP)	(as identified in your SWPPP)
American Airlines	American Eagle Airlines	ARFF
(05/19/14)	(05/19/14)	(05/22/14)

Page 2 of 8

÷

EVALUATION DATE: May 2014

ernet	
Anna W	
AME: /	
CTOR N	
INSPE	

TITLE: AMEC, Consultant

	 ASIG was notified of the deficiency by e-mail. ASIG was notified of the deficiency by e-mail. thout lid. Confirmation that all deficiencies were abated was received on 6/27/14. 	, , , , , , , , , , , , , , , , ,	Confirmation that all deficiencies were abated was received on 05/19/14.	OR BMP DESCRIBE ADDITIONAL/REVISED BMPs OR CORRECTIVE ACTIONS AND THEIR DATE(S) OF IMPLEMENTATION icles. Delta Airlines was notified of the deficiency	by e-mail.
ther DESCRIBE DEFICIENCIES IN BMPs OR BMP IMPLEMENTATION the • Oil leaks observed from vehicles.	 f this Improper storage of waste asphalt. Trash container observed without lid. Staining from fuel/oil leaks observed in operation area. 	ther DESCRIBE DEFICIENCIES IN BMPs OR BMP IMPLEMENTATION the Accumulated sediment observed. f this		ther DESCRIBE DEFICIENCIES IN BMPS OR BMP IMPLEMENTATION the Oil leaks observed from vehicles. • Oil leaks observed from vehicles.	 operation area. Accumulated trash observed.
If yes to either question, complete the next two	form.	If yes to either question, complete the next two columns of this		If yes to either question, complete the next two columns of this	form.
HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED? Yes	ARE ADDITIONAL/REVISED BMPs NECESSARY? No	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED? Yes	ARE ADDITIONAL/REVISED BMPs NECESSARY? No	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED? Yes	ARE ADDITIONAL/REVISED BMPs NECESSARY? No
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP)	ASIG (05/30/14)	POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP)	Bradtord (05/19/14)	POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP)	Delta Airlines (05/21/14)

.

,

2013-2014 Annual Report FORM 5 – ANNUAL COMPREHENSIVE SITE COMPLIANCE EVALUATION POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY BMP STATUS

EVALUATION DATE: May 2014

INSPECTOR NAME: Anna Wernet

TITLE: AMEC, Consultant

S OR BMP DESCRIBE ADDITIONAL/REVISED BMPS OR CORRECTIVE ACTIONS AND THEIR DATE(S) OF IMPLEMENTATION	icles. DHL was notified of the deficiency by e-mail.	Confirmation that all deficiencies were abated was received on 06/24/14.	s OR BMP DESCRIBE ADDITIONAL/REVISED BMPs OR	CORRECTIVE ACTIONS AND THEIR DATE(S) OF IMPLEMENTATION	ELS was noti		Confirmation that all deficiencies were abated was received on 06/25/14.		S OR BMP DESCRIBE ADDITIONAL/REVISED BMPS OR CORRECTIVE ACTIONS AND THEIR DATE(S) OF IMPLEMENTATION	bserved.	red cad cainment. confirmation that all deficiencies were abated was received on 06/20/14.
DESCRIBE DEFICIENCIES IN BMPs OR BMP IMPLEMENTATION	Oil leaks observed from vehicles. Accumulated sediment observed.		DESCRIBE DEFICIENCIES IN BMPs OR BMP	IMPLEMENTATION	Accumulated sediment observed. Immroner storage of inonerable	equipment.	Improper storage of tires.		DESCRIBE DEFICIENCIES IN BMPS OR BMP IMPLEMENTATION	Accumulated trash/debris observed. Improper storage of inoperable	 equipment. Outdoor storage of weathered supplies without cover/containment.
If yes to either question, complete the	next two columns of this	form.	If yes to either	question, complete the	next two columns of this	form.			If yes to either question, complete the	next two columns of this	form.
HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	Yes	ARE ADDITIONAL/REVISED BMPs NECESSARY?	No HAVE ANY BMPS NOT BEEN FULLY	IMPLEMENTED?	Yes	ARE ADDITIONAL/REVISED BMPs	NECESSARY?	Q	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	Yes	ARE ADDITIONAL/REVISED BMPs NECESSARY? No
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP)			POTENTIAL POLLUTANT	SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in vour SWPPP)		(05/29/14)			POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in vour SWPPP)		(05/23/14)

Page 4 of 8

A REAL PROPERTY AND A REAL PROPERTY.

2013-2014 Annual Report FORM 5 – ANNUAL COMPREHENSIVE SITE COMPLIANCE EVALUATION POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY BMP STATUS

EVALUATION DATE: May 2014

INSPECTOR NAME: Anna Wernet

TITLE: AMEC, Consultant

POTENTIAL POLLUTANT	HAVE ANY BMPs NOT BEEN FULLY	If yes to either	DESCRIBE DEFICIENCIES IN BMPs OR BMP	DESCRIBE ADDITIONAL/REVISED BMPs OR
SOURCE/INDUSTRIAL ACTIVITY AREA		question, -	IMPLEMENTATION	CORRECTIVE ACTIONS AND THEIR DATE(S)
(as identified in your SWPPP)		complete the		OF IMPLEMENTATION
	Yes	next two	 Recycling containers observed 	
		columns of this	overflowing.	Flagship was notified of the deficiency on site.
Flagship	ARE ADDITIONAL/REVISED BMPs	form.		
(05/30/14)	NECESSARY?			Confirmation that all deficiencies were abated
	- N			was received on 06/04/14.
POTENTIAL POLLUTANT	HAVE ANY BMPs NOT BEEN FULLY	If yes to either	DESCRIBE DEFICIENCIES IN BMPs OR BMP	DESCRIBE ADDITIONAL/REVISED BMPs OR
SOURCE/INDUSTRIAL ACTIVITY AREA	iMPLEMENTED?	question,	IMPLEMENTATION	CORRECTIVE ACTIONS AND THEIR DATE(S)
(as identified in your SWPPP)		complete the		OF IMPLEMENTATION
	Yes	next two	 Oil staining observed at gate area. 	
Frontier		columns of this		Frontier Airlines was notified of the deficiency
(05/20/14)	ARE ADDITIONAL/REVISED BMPs	form.		by e-mail.
	NECESSARY?			
				Confirmation that all deficiencies were abated
	No			was received on 06/10/14.
		4 -		
POTENTIAL POLLUTANT	HAVE ANY BMPs NOT BEEN FULLY	If yes to either	DESCRIBE DEFICIENCIES IN BMPs OR BMP	DESCRIBE ADDITIONAL/REVISED BMPs OR
SOURCE/INDUSTRIAL ACTIVITY AREA	IMPLEMENTED?	question,	IMPLEMENTATION	CORRECTIVE ACTIONS AND THEIR DATE(S)
(as identified in your SWPPP)		complete the		OF IMPLEMENTATION
	Yes	next two	 Accumulated trash/debris observed. 	
		columns of this	 Improper storage of inoperable 	Hawaiian was notified of the deficiency by e-
Hawaiian Airlines	ARE ADDITIONAL/REVISED BMPs	form.	equipment.	mail.
(05/19/14)	NECESSARY?	ħ	 Fluid leaks observed from equipment. 	
				Confirmation that all deficiencies were abated
	ON			Was received on vo/ 24/ 14.

÷

2013-2014 Annual Report	FORM 5 – ANNUAL COMPREHENSIVE SITE COMPLIANCE EVALUATION	POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY BMP STATUS
-------------------------	--	---

EVALUATION DATE: May 2014

INSPECTOR NAME: Anna Wernet TITLE: AMEC, Consultant

POTENTIAL POLLUTANT	HAVE ANY BMPS NOT BEEN FULLY	If yes to either	DESCRIBE DEFICIENCIES IN BMPs OR BMP IMPI EMENTATION	DESCRIBE ADDITIONAL/REVISED BMPs OR CORRECTIVE ACTIONS AND THEIR DATE(S)
(as identified in your SWPPP)		complete the		OF IMPLEMENTATION
	Yes	next two columns of this	 Accumulated trash observed. 	Jet Blue was notified of the deficiency during
Jet Blue	ARE ADDITIONAL/REVISED BMPs	form.		inspection.
(4T/T7/C0)	No No			Confirmation that all deficiencies were abated was received on 05/21/14.
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	If yes to either question,	DESCRIBE DEFICIENCIES IN BMPS OR BMP IMPLEMENTATION	DESCRIBE ADDITIONAL/REVISED BMPs OR CORRECTIVE ACTIONS AND THEIR DATE(S)
(as identified in your SWPPP)	;	complete the		OF IMPLEMENTATION
Landmark Aviation	Yes	next two columns of this	 Fluid leaks observed from equipment. Accumulated sediment observed. 	Landmark was notified of the deficiency by e-
(05/22/14)	ARE ADDITIONAL/REVISED BMPs	form.	 Oil staining observed. 	mail.
	NO			Confirmation that all deficiencies were abated was received on 06/10/14.
POTENTIAL POLLUTANT	HAVE ANY BMPs NOT BEEN FULLY	If yes to either	DESCRIBE DEFICIENCIES IN BMPS OR BMP	DESCRIBE ADDITIONAL/REVISED BMPs OR
SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in vour SWPPP)	IMPLEMENTED	question, complete the		OCKRECTIVE ACTIONS AND THEIR DATE(3) OF IMPLEMENTATION
	Yes	next two	 No signs posted on active hose bibs. 	
SDCRAA		columns of this	 Stenciling on storm drains illegible. 	SDCRAA was notified of the deficiency by
(05/29/14)	ARE ADDITIONAL/REVISED BMPs	form.	 Accumulated debris in storm drains. 	work order.
	NECESSARY?		 Improper storage of inoperable 	
			equipment.	WOIK requests were subjituted UII 0/ 10/ 14. Abstement is ongoing and will be completed
	ON .		Storage of items without	prior to next guarterly inspection.
			 Improver storage of notantially 	-
			hazardous materials (batteries)	
			 Non-hazardous waste stored without 	
			cover.	
			 Improper storage of trash. 	
			 Accumulated sediment observed. 	

Page **6** of **8**

2013-2014 Annual Report FORM 5 – ANNUAL COMPREHENSIVE SITE COMPLIANCE EVALUATION POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY BMP STATUS

				(
	INSPECTOR NAME: Anna Wernet	a Wernet	TITLE: AMEC, Consultant SIGNATURE:	IRE: CARONA
POTENTIAL POLLUTANT HAV SOURCE/INDUSTRIAL ACTIVITY AREA IMP (as identified in your SWPPP)	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED? Voc	If yes to either question, complete the	DESCRIBE DEFICIENCIES IN BMPs OR BMP IMPLEMENTATION • Accumulated debris observed	DESCRIBE ADDITIONAL/REVISED BMPs OR CORRECTIVE ACTIONS AND THEIR DATE(S) OF IMPLEMENTATION
Southwest Airlines		columns of this	Improper storage of inoperable	Southwest was notified of the deficiency by e-
(05/20/14) ARE NEC	ARE ADDITIONAL/REVISED BMPs NECESSARY?	form.	 equipment. Accumulated trash observed. 	mail.
S				Confirmation that all deficiencies were abated was received on 06/24/14.
POTENTIAL POLLUTANT HAV SOURCE/INDUSTRIAL ACTIVITY AREA IMP	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	If yes to either question,	DESCRIBE DEFICIENCIES IN BMPs OR BMP IMPLEMENTATION	DESCRIBE ADDITIONAL/REVISED BMPs OR CORRECTIVE ACTIONS AND THEIR DATE(S)
(as identified in your SWPPP)		complete the	 Oil staining was observed within the 	OF IMPLEMENTATION
		columns of this	gate area.	Spirit was notified of the deficiency by e-mail.
Spirit ARE (05/20/14) NEC	ARE ADDITIONAL/REVISED BMPs NECESSARY?	form.		Confirmation that all deficiencies were abated was received on 05/29/14.
NO				
POTENTIAL POLLUTANT HAV SOURCE/INDUSTRIAL ACTIVITY AREA IMP	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	If yes to either question, complete the	DESCRIBE DEFICIENCIES IN BMPs OR BMP IMPLEMENTATION	DESCRIBE ADDITIONAL/REVISED BMPS OR CORRECTIVE ACTIONS AND THEIR DATE(S) OF IMPLEMENTATION
(as identified in you owned) Yes		next two	 Storage of items without 	
es es	ADE ADDITIONIAL (DEVICED DAMD-	columns of this	cover/containment.	United was notified of the deficiency by work
(U3/3U/14) AKE NC	ARE AUDITIONAL/ REVISED DIVITS		equípment.	
			 Accumulated sediment, trash, and debris observed 	Confirmation that all deficiencies were abated was received on 06/27/14.
2			 Oil staining observed within gate area. 	

Page 7 of 8

۲

2013-2014 Annual Report	POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY BMP STATUS
-------------------------	---

INSPECTOR NAME: Anna Wernet

TITLE: AMEC, Consultant

	-)
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP)	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	If yes to either question, complete the	DESCRIBE DEFICIENCIES IN BMPs OR BMP IMPLEMENTATION	DESCRIBE ADDITIONAL/REVISED BMPs OR CORRECTIVE ACTIONS AND THEIR DATE(S) OF IMPLEMENTATION
US Airways	Yes	next two columns of this	 Trash container observed without lid. Oil spots observed at gate. 	US Airways was notified of the deficiency by
(05/19/14)	ARE ADDITIONAL/REVISED BMPs NECESSARY?	form.		e-mail.
	QN			Confirmation that all deficiencies were abated was received on 06/10/14.
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in vour SWPPP)	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	If yes to either question, complete the	DESCRIBE DEFICIENCIES IN BMPs OR BMP IMPLEMENTATION	DESCRIBE ADDITIONAL/REVISED BMPs OR CORRECTIVE ACTIONS AND THEIR DATE(S) OF IMPLEMENTATION
Virgin America	Yes	next two columns of this	Oil stains observed at gate area.	Virgin was notified of the deficiency by e-mail.
(05/20/14)	ARE ADDITIONAL/REVISED BMPs NECESSARY?	form.		Confirmation that all deficiencies were abated was received on 06/17/14.
	NO			
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	If yes to either question,	DESCRIBE DEFICIENCIES IN BMPs OR BMP IMPLEMENTATION	DESCRIBE ADDITIONAL/REVISED BMPs OR CORRECTIVE ACTIONS AND THEIR DATE(S)
(as identified in your SWPPP)	Yes	complete the next two	 Trash container observed to be 	OF IMPLEMENTATION
West Jet		columns of this	overfilled.	West Jet was notified of the deficiency in
(05/20/14)	ARE ADDITIONAL/KEVISED BIMPS NECESSARY?	-10LM-		הפוסטון ממוזווט נוופ וווסאפרנוטון.
	No			Confirmation that all deficiencies were abated was received on 05/27/14.

i.

Attachment 4

Analytical Data for Storm Events

First Storm Event

21 October 2013

Amanda Archenhold AMEC 9177 Sky Park Court Suite A San Diego, CA 92123

RE:San Diego Airport

Work Order No.: 1310144

Attached are the results of the analyses for samples received by the laboratory on 10/09/13 19:25.

The samples were received by Sierra Analytical Labs, Inc. with a chain of custody record attached or completed at the submittal of the samples.

The analyses were performed according to the prescribed method as outlined by EPA, Standard Methods, and A.S.T.M.

The remaining portions of the samples will be disposed of within 30 days from the date of this report. If you require any additional retaining time, please advise us.

Sincerely,

d R. Fryth

Richard K. Forsyth

Laboratory Director

Sierra Analytical Labs, Inc. is certified by the California Department of Health Services (DOHS), Environmental Laboratory Accredidation Program (ELAP) No. 2320.

AMEC	Project: San Diego Airport	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	10/21/13 10:27

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
C-B08-8-100913	1310144-01	Liquid	10/09/13 17:12	10/09/13 19:25
C-B09-10B-100913	1310144-02	Liquid	10/09/13 17:31	10/09/13 19:25

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

26052 MERIT CIRCLE SUITE 105, LAGUNA HILLS, CALIFORNIA 92653 TELEPHONE: (949) 348-9389 Fax: (949) 348-9115 E-MAIL: SIERRALABS @ SIERRALABS.NET

AMEC	Project: San Diego Airport	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	10/21/13 10:27

Microbiological Parameters by APHA Standard Methods

		Sierra A	nalytical	Labs, I	nc.				
Analyte	Result	Reporting Limi		Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B08-8-100913 (1310144-01) Liquid	Sampled: 10/09/	13 17:12	Received: 10)/09/13 1	9:25				
Enterococcus	110	['] 1	CFU/100 mL	1	B3J0966	10/09/13	10/09/13 19:45	SM 9230C	
Fecal Coliforms	40	1.0	n	н	0	н	n	SM 9222D	
Total Coliforms	270	10	п	10	11	н	u.	SM 9222B	
C-B09-10B-100913 (1310144-02) Liqui	d Sampled: 10/	09/13 17:3	1 Received:	10/09/1	3 19:25				
Enterococcus	2000	10	CFU/100 mL	10	B3J0966	10/09/13	10/09/13 19:45	SM 9230C	
Fecal Coliforms	2400	10	11		м	11	0	SM 9222D	
Total Coliforms	60000	100	R	100	н	11	11	SM 9222B	

ſ

	y Park Court Suite A go CA, 92123	Project: San Diego Airport Project Number: [none] Project Manager: Amanda Archenhold	Reported: 10/21/13 10:27
		Notes and Definitions	
DET	Analyte DETECTED		
ND	Analyte NOT DETECTED at or above the reporting	g limit	
NR	Not Reported	•	
dry	Sample results reported on a dry weight basis		
RPD	Relative Percent Difference		
			•

JCOINT			<i>To:</i> Sierra Analytical 26052 Merit Circle, Suite 105 Laguna Hills, CA 92653 Phone: (949) 348-9115 Fax: (949) 348-9115	Bottle Bottle Size Preservative Count	120 mL 4°C + Tablet 20 mL Plastic Preservative	120 mL 4°C + Tablet Plastic Preservative	- (hy Date/Time: 10/9/13 17:55 Date/Time: 10/9/13 17:55
	Analysis Reguest and Chain of Custody	SAN DIEGO AIRPORT		Analyses	Total Coliforms, Fecal Coliforms, Enterococcus	Total Coliforms, Fecal Coliforms, Enterococcus	13, 17:55 Received By: MEXANDER
	Analysi			Time	P.C.	6.2	Date/Time: <u>[0/m//3</u>] IDate/Time: <u>[6/4//3</u>
			astructure ax: (858) 278-5300	Date	- 10/09 13	10/09/13	Usernet Wernet
			<i>From:</i> AMEC Environment & Infrastructure Attn: Amanda Archenhold 9177 Sky Park Court San Diego, CA 92123 Phone: (858) 278-3600 _. Fax: (858) 278-5300	SampleID	01 C-B08-8 1009 13	03 C-B09-10B 100913	Sampler's Initials: <u>M</u> Relinquished By: <u>MMA</u> Relinquished By: <u>MIC</u>

14 November 2013

Amanda Archenhold AMEC 9177 Sky Park Court Suite A San Diego, CA 92123

RE:San Diego Airport (2013) Work Order No.: 1310169

Attached are the results of the analyses for samples received by the laboratory on 10/10/13 14:21.

The samples were received by Sierra Analytical Labs, Inc. with a chain of custody record attached or completed at the submittal of the samples.

The analyses were performed according to the prescribed method as outlined by EPA, Standard Methods, and A.S.T.M.

The remaining portions of the samples will be disposed of within 30 days from the date of this report. If you require any additional retaining time, please advise us.

Sincerely,

R. Teast

Richard K. Forsyth

Laboratory Director

Sierra Analytical Labs, Inc. is certified by the California Department of Health Services (DOHS), Environmental Laboratory Accredidation Program (ELAP) No. 2320.

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Reported: 11/14/13 10:54		
	ANALYTICAL REPORT FOR SAMI	PLES		
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
C-B03-2-100913	1310169-01	Liquid	10/09/13 17:35	10/10/13 14:21
C-B05-4-100913	1310169-02	Liquid	10/09/13 17:45	10/10/13 14:21
C-B06-5A-100913	1310169-03	Liquid	10/09/13 17:10	10/10/13 14:21
C-B07-7-100913	1310169-04	Liquid	10/09/13 17:03	10/10/13 14:21
C-B08-8-100913	1310169-05	Liquid	10/09/13 17:12	10/10/13 14:21
C-B09-10B-100913	1310169-06	Liquid	10/09/13 17:31	10/10/13 14:21
C-B12-9A-100913	1310169-07	Liquid	10/09/13 17:09	10/10/13 14:21
S-B06-12-100913	1310169-08	Liquid	10/09/13 21:14	10/10/13 14:21
S-B06-12-100913	1310169-09	Liquid	10/09/13 17:55	10/10/13 14:21
C-B03-2-100913-BLK	1310169-10	Liquid	10/09/13 17:35	10/10/13 14:21

AMEC	Project: San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	11/14/13 10:54

Conventional Chemistry Parameters by APHA/EPA Methods

·····		Sierra A	nalytical	Labs, I	nc.				
Analyte	Result	Reporting Limi		Dilution	Batch	Prepared	Analyzed	Method	Note
C-B03-2-100913 (1310169-01) Liquid	Sampled: 10/09	/13 17:35	Received: 1	0/10/13 1	4:21				
Ammonia as N	24.5	2.50	mg/L	25	B3J2242	10/10/13	10/10/13 16:16	SM 4500-NH3	
Biochemical Oxygen Demand	210	2.00	н.	. 1	U	11	10/15/13 16:16	EPA 405.1	
Chemical Oxygen Demand	1100	0.100	ท	.11	11	10	10/10/13 16:16	EPA 410.4	
Specific Conductance (EC)	950	0.100	µmhos/cm	н	tt.	н	11	EPA 120.1	
Total Hardness	343	0.400	mg/L	U.	U U	IJ	н	SM 2340 C	
Hexane Extractable Material (HEM)	6.90	2.00	н		11	н	11	EPA 1664	
Methylene Blue Active Substances	0.480	0.0500	н	11	0	н	n	EPA 425.1	
pH	5.67	0.100	pH Units	н	11	0	11	EPA 150.1	
Total Suspended Solids	102	1.00	mg/L	п	11	n	11	EPA 160.2	
C-B05-4-100913 (1310169-02) Liquid	Sampled: 10/09	/13 17:45	Received: 1	0/10/13 1	4:21				
Ammouia as N	4.50	0.500	mg/L	5	B3J2242	10/10/13	10/10/13 16:16	SM 4500-NH3	
Biochemical Oxygen Demand	115	2.00	11	1	11	н	10/15/13 16:16	EPA 405.1	
Chemical Oxygen Demand	660	0.100	н		н	н	10/10/13 16:16	EPA 410.4	
Specific Conductance (EC)	600	0.100	µmhos/cm	11	н	H	Н.	EPA 120.1	
Total Hardness	196	0.400	mg/L	м	u:	11	н	SM 2340 C	
Hexane Extractable Material (HEM)	2.00	2.00	11	н	н	н	11	EPA 1664	
Methylene Blue Active Substances	0.280	0.0500	н	11	u	"	. н	EPA 425.1	
pH	6.44	0.100	pH Units	11	н	н	11	EPA 150,1	
Total Suspended Solids	72.0	1.00	mg/L	n-	n	u	п	EPA 160.2	
C-B06-5A-100913 (1310169-03) Liqui	d Sampled: 10/0	09/13 17:10) Received:	10/10/13	14:21				
Ammonia as N	1.85	0.500	mg/L	5	B3J2242	10/10/13	10/10/13 16:16	SM 4500-NH3	
Biochemical Oxygen Demand	33.0	2.00		1	н	н	10/15/13 16:16	EPA 405.1	
Chemical Oxygen Demand	111	0.100	11	н	н	н	10/10/13 16:16	EPA 410.4	
Specific Conductance (EC)	296	0.100	µmhos/cm	н	н	н	11	EPA 120,1	
Total Hardness	60.0	0.400	mg/L		11	н	11	SM 2340 C	
Hexane Extractable Material (HEM)	ND	2.00	"	U	11	u.	11	EPA 1664	
Methylene Blue Active Substances	0.140	0.0500	n	0	н	n	н	EPA 425,1	
pH	6.71	0.100	pH Units	91	n	11	u.	EPA 150.1	
Total Suspended Solids	30.0	1.00	mg/L	11	11	"	11	EPA 160,2	

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Ni	roject: San umber: [non mager: Ama	ie]		13)		Reported: 11/14/13 10	54
	onventional C					A Moth	ode	11/14/13 10	- 54
		•	nalytical	-		Amen	ous		
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
C-B07-7-100913 (1310169-04) Liquid	Sampled: 10/09	/13 17:03 1	Received: 1	0/10/13 1	4:21		· · · · · · · · · · · · · · · · · · ·	······································	
Ammonia as N	12.2	2.50	mg/L	25	B3J2242	10/10/13	10/10/13 16:16	SM 4500-NH3	
Biochemical Oxygen Demand	130	2.00	11	1	н	н	10/15/13 16:16	EPA 405.1	
Chemical Oxygen Demand	424	0.100	н	н	. н	н	10/10/13 16:16	EPA 410.4	
Specific Conductance (EC)	389	0.100	µmhos/cm	n		н	n	EPA 120.1	
Total Hardness	97.0	0.400	mg/L	11	11	н	n	SM 2340 C	
Hexane Extractable Material (HEM)	4.00	2.00	н	11	н	н	u.	EPA 1664	
Methylene Blue Active Substances	0.430	0.0500	н	11	н	н	н	EPA 425.1	
pĤ	5.51	0.100	pH Units	n	N	11	11	EPA 150.1	
Total Suspended Solids	110	1.00	mg/L	н	R	·	n	EPA 160.2	
C-B08-8-100913 (1310169-05) Liquid	Sampled: 10/09	/13 17:12	Received: 1	0/10/13 1	4:21				
Ammonia as N	0.950	0.500	mg/L	5	B3J2242	10/10/13	10/10/13 16:16	SM 4500-NH3	
Biochemical Oxygen Demand	14.0	2.00	н	1	۳.	н	10/15/13 16:16	EPA 405.1	
Chemical Oxygen Demand	53.0	0.100	н	u,	н	н	10/10/13 16:16	EPA 410.4	
Specific Conductance (EC)	3.90	0.100	µmhos/cm	9	н	н.	11	EPA 120.1	
Total Hardness	127	0.400	mg/L	0	11	н	If	SM 2340 C	
Hexane Extractable Material (HEM)	ND	2.00	11	11	11	н	н	EPA 1664	
Methylene Blue Active Substances	0.130	0,0500	N	11	м	11	н	EPA 425.1	
pH	6.67	0.100	pH Units	ti	11	н	11	EPA 150.1	
Total Suspended Solids	9.00	1.00	mg/L	н	11	н	11	EPA 160.2	/
C-B09-10B-100913 (1310169-06) Liqu	id Sampled: 10	/09/13 17:31	Received	: 10/10/1:	3 14:21				
Ammonia as N	5.00	2.50	mg/L	25	B3J2242	10/10/13	10/10/13 16:16	SM 4500-NH3	
Biochemical Oxygen Demand	196	2.00	If .	1	υ	н	10/15/13 16:16	EPA 405.1	
Chemical Oxygen Demand	560	0.100	11	н	11	н	10/10/13 16:16	EPA 410.4	
Specific Conductance (EC)	690	0.100	µmhos/cm	н	н	н	11	EPA 120,1	
Total Hardness	183	0.400	mg/L	н	0	н	n	SM 2340 C	
Hexane Extractable Material (HEM)	4.30	2.00	н	н	11	U.	"	EPA 1664	
Methylene Blue Active Substances	0.320	0.0500	-8	п	н	н	н	EPA 425.1	
рН	6.50	0.100	pH Units	н	11	и	11	EPA 150.1	
Total Suspended Solids	182	1.00	mg/L	п	-0	и	11	EPA 160.2	

Hexane Extractable Material (HEM)

Methylene Blue Active Substances

Total Suspended Solids

Biochemical Oxygen Demand

Hexane Extractable Material (HEM)

Chemical Oxygen Demand

Specific Conductance (EC)

Total Suspended Solids

Biochemical Oxygen Demand

Chemical Oxygen Demand

Total Suspended Solids

Specific Conductance (EC)

Hexane Extractable Material (HEM)

Methylene Blue Active Substances

Total Hardness

Ammonia as N

Total Hardness

pН

pН

pН

AMEC			roject: San umber: [non		irport (20	13)		Reported:	
9177 Sky Park Court Suite A			-	-				•	
San Diego CA, 92123		Project Ma	mager: Ama	inda Arch	enhold			11/14/13 10:	.54
Con	ventional Ch	emistry]	Paramete	rs by A	PHA/EP	A Meth	ods		
		Sierra A	nalytical	Labs, I	nc.				
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
C-B12-9A-100913 (1310169-07) Liquid	Sampled: 10/0	9/13 17:09	Received:	10/10/13	14:21				
Ammonia as N	2.40	0.500	mg/L	5	B3J2242	10/10/13	10/10/13 16:16	SM 4500-NH3	
Biochemical Oxygen Demand	16.0	2,00	41	ŀ	н	8	10/15/13 16:16	EPA 405.1	
Chemical Oxygen Demand	31.0	0.100	9	п	11	11	10/10/13 16:16	EPA 410.4	
Specific Conductance (EC)	322	0.100	µmhos/cm	н	11	п	н :	EPA 120.1	
Total Hardness	110	0.400	mg/L	.0	11	н	н	SM 2340 C	

pH Units

mg/L

mg/L

µmhos/cm

mg/L

U

pH Units

mg/L

mg/L

н

µmhos/cm

mg/L

ĸ

9

pH Units

mg/L

11

н

1

л

H

1

...

11

11

10/10/13

łł.

ų

п

в

n

10/10/13

B3J2242

н

n

0

11

0

н

B3J2242

н

10/15/13 16:16

л

41

r

H

н

н

Ħ

10/10/13 16:16 EPA 410.4

10/10/13 16:16SM 4500-NH3

10/15/13 16:16 EPA 405.1

10/10/13 16:16 EPA 410.4

ND

0.140

6.51

13.0

70.0

296

83.8

295

ND

6.56

58.0

ND

ND

2.94

ND

ND

ND

6.83

ND

C-B03-2-100913-BLK (1310169-10) Liquid Sampled: 10/09/13 17:35 Received: 10/10/13 14:21 ND

S-B06-12-100913 (1310169-08) Liquid Sampled: 10/09/13 21:14 Received: 10/10/13 14:21

2.00

0.0500

0.100

1.00

2.00

0.100

0.100

0.400

2.00

0.100

1.00

0.100

2.00

0.100

0.100

0.400

0.0500

0.100

1.00

2.00

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

26052 MERIT CIRCLE SUITE 105, LAGUNA HILLS, CALIFORNIA 92653 TELEPHONE: (949) 348-9389 FAX: (949) 348-9115 E-MAIL: SIERRALABS @ SIERRALABS.NET

EPA 1664

EPA 425.1

EPA 150.1

EPA 160.2

EPA 405.1

EPA 120.1

SM 2340 C

EPA 1664

EPA 150.1

EPA 160.2

EPA 120.1

SM 2340 C

EPA 1664

EPA 425.1

EPA 150.1

EPA 160.2

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123	Project: San Diego Airport (2013) Project Number: [none] Project Manager: Amanda Archenhold							Reported: 11/14/13 10:54		
	Me	etals by El	PA 200 \$	Series M	ethods					
		Sierra A	nalytica	l Labs, I	nc.					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
C-B03-2-100913 (1310169-01) Liquid	Sampled: 10/09	/13 17:35 l	Received:	10/10/13 1	4:21					
Silver	ND	1.5	μg/L	1	B3J1044	10/10/13	10/15/13 11:39			
Aluminum	4300	25	н	0	-11	11	U.	"		
Arsenic	ND	3.0	It	ų	н	н	11.	11		
Cadmium	ND	2.0		11	н	n	1f	11		
Chromium	8.0	3.0	11	и	"	11	н	0		
Hexavalent Chromium	ND	0.0020	mg/L	. "	B3J1045	10/10/13	10/16/13 12:11	EPA 218.6		
Copper	1700	1.0	μg/L	н	B3J1044	10/10/13	10/15/13 11:39	EPA 200.8		
Iron	4.9	0.025	mg/L	н	11	11	0	н		
Mercury	ND	0.00030	н	If	B3J1107	10/11/13	10/17/13 15:45	EPA 245.1		
Nickel	7 7	5.0	μg/L	"	B3J1044	10/10/13	10/15/13 11:39	EPA 200.8		
Lead	290	1.0	н	v	11	u.	0	n		
Zinc	1500	1.0	н	у	н	н	11	n.		
C-B05-4-100913 (1310169-02) Liquid	Sampled: 10/09	0/13 17:45 I	Received:	10/10/13 1	4:21					
Silver	ND	1.5	μg/L	1	B3J1044	10/10/13	10/15/13 11:39	EPA 200.8		
Aluminum	1800	25		9	н.	н	n.	n .		
Arsenic	ND	3.0	"	11	н	н	н	II.		
Cadmium	ND	2.0	"	н	н	н	н	II.		
Chromium	ND	3.0	.11	н	н	н	н	n		
Hexavalent Chromium	ND	0.0020	mg/L	н	B3J1045	10/10/13	10/16/13 12:11	EPA 218.6		
Copper	1900	1.0	µg/L	н	B3J1044	10/10/13	10/15/13 11:39	EPA 200.8		
Iron	1.9	0,025	mg/L	н	н	н	н	n		
Mercury	ND	0.00030	н	н	B3J1107	10/11/13	10/17/13 15:45	EPA 245.1		
Nickel	48	5.0	µg/L	н	B3J1044	10/10/13	10/15/13 11:39	EPA 200.8		
Lead	ND	1.0	н	н	п	н	"	n		
Zinc	7100	1.0	н	н	11	12	11			

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	roject: Sar umber: [noi inager: Am	ne]	irport (20 enhold	13)		Reporte 11/14/13 1	•
•	Me	tals by El	PA 200 S	eries M	ethods				
		Sierra A	nalytical	Labs, I	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
C-B06-5A-100913 (1310169-03) Liquid	Sampled: 10/0	9/13 17:10	Received	: 10/10/13	14:21		· · · · · · · ·	e.	
Silver	ND	1.5	μg/L	1	B3J1044	10/10/13	10/15/13 11:39	EPA 200.8	
Aluminum	1000	25	н	н	n	11	lt.	an a	
Arsenic	ND	3.0	. H	н	11	"	"	11	
Cadmium	ND	2.0	U	n	11-	9	11	11	
Chromium	12	3.0	11	u.	u	н	n	н.	
Hexavalent Chromium	ND	0.0020	mg/L	11	B3J1045	10/10/13	10/16/13 12:11	EPA 218.6	
Copper	82	1.0	μg/L	n	B3J1044	10/10/13	10/15/13 11:39	EPA 200.8	
Iron	1.1	0.025	mg/L	И	n	н	п	W.	
Mercury	ND	0.00030	IJ	n	B3J1107	10/11/13	10/17/13 15:45	EPA 245,1	
Nickel	ND	5.0	μg/L	П	B3J1044	10/10/13	10/15/13 11:39		
Lead	ND	1.0	n	11	N.	11	11	н	
Zinc	1100	1.0	н	11		· II	И	н	
C-B07-7-100913 (1310169-04) Liquid	Sampled: 10/09	/13 17:03	Received: 1	10/10/13 1	4:21				
Aluminum	1800	25	μg/L	1	B3J1044	10/10/13	10/15/13 11:39	EPA 200.8	
Copper	760	1.0	н	11	н	11	u	n .	
fron	2.1	0.025	mg/L	IF .	.9		n	. H	
Lead	ND	1.0	μg/L	н	н	н	н	n.	
Zinc	2200	1.0	п	n	М	11	н	n	
C-B08-8-100913 (1310169-05) Liquid	Sampled: 10/09	/13 17:12	Received:	10/10/13 1	4:21				
Aluminum	72	25	μg/L	1	B3J1044	10/10/13	10/15/13 11:39	EPA 200.8	
Copper	120	1.0	11	0	н	n ,	II	u.	
Iron	0.094	0.025	mg/L	11	0	11	n	11	
Lead	ND	1.0	μg/L	U	91	łt	n	n	
Zinc	250	1.0	н	н	н	11	n	n	

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123	Project: San Diego Airport (2013) Project Number: [none] Project Manager: Amanda Archenhold								Reported: 11/14/13 10:54		
	Me	etals by EF	PA 200 S	Series M	ethods						
		Sierra Ai	nalytica	l Labs, I	nc.						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
C-B09-10B-100913 (1310169-06) Liquid	Sampled: 10	/09/13 17:31	Receive	d: 10/10/13	3 14:21						
Aluminum	2500	25	μg/L	1	B3J1044	10/10/13	10/15/13 11:39	EPA 200.8			
Copper	120	1.0	н	91	**	н	U .	н			
Iron	3.1	0.025	mg/L	н	н		11	н			
Lead	ND	1.0	μg/L	11	n	н	н	"			
Zinc	1200	1.0	11	н	11	"	н.	11			
C-B12-9A-100913 (1310169-07) Liquid	Sampled: 10/	09/13 17:09	Received	I: 10/10/13	14:21						
Aluminum	210	25	μg/L	1	B3J1044	10/10/13	10/15/13 11:39	EPA 200.8			
Copper	49	1.0	N	11	н	11	11	H.			
Iron	0.26	0.025	mg/L	"	18	в	н	11			
Lead	ND	1.0	μg/L	ų	н.	17	11	11.			
Zinc	220	1.0	н	11	11	н	н	п			
S-B06-12-100913 (1310169-08) Liquid	Sampled: 10/0	9/13 21:14	Received:	: 10/10/13 1	14:21						
Silver	ND	1.5	μg/L	1	B3J1044	10/10/13	10/15/13 11:39	EPA 200.8	778-181		
Aluminum	720	25	11	11	n	11	н	H.			
Arsenic	ND	3.0	"	н	11	И.	υ				
Cadmium	ND	2.0	11	n	11	н	Û	N-			
Chromium	ND	3.0	11	н	17	н	11	И.			
Hexavalent Chromium	ND	0.0020	mg/L	п	B3J1045	10/10/13	10/16/13 12:11	EPA 218.6			
Copper	410	1.0	μg/L	н	B3J1044	10/10/13	10/15/13 11:39	EPA 200.8			
Iron	0.10	0.025	mg/L	н	11	11	u.	n			
Mercury	ND	0.00030	H a	н	B3J1107	10/11/13	10/17/13 15:45	EPA 245.1			
Nickel	ND	5.0	μg/L	м	B3J1044	10/10/13	10/15/13 11:39	EPA 200.8			
Lead	ND	1.0	11	н	11	11	н.	н.			
Zinc	2000	1.0	IE.	н	0	11	н	II.			

Zinc

Metals by EPA 200 Series Methods										
San Diego CA, 92123	Project Manager:	Amanda Archenhold	11/14/13 10:54							
9177 Sky Park Court Suite A	Project Number:	[none]	Reported:							
AMEC	Project:	San Diego Airport (2013)								

Sierra Analytical Labs. Inc.

		Siella Al	larytica	1 1/403, 1			÷		
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B03-2-100913-BLK (1310169-10) Liquid	Sampled:	10/09/13 17:	35 Rece	ived: 10/1	0/13 14:21				
Silver	ND	1.5	μg/L	1	B3J1044	10/10/13	10/15/13 11:39	EPA 200.8	
Aluminum	ND	25	11	11	P.	н	9	н	
Arsenic	ND	3.0	н	"	н		11	8	
Cadmium	ND	2.0	н	11	н	11	н	11	
Chromium	ND	3.0	н	н	11	·	н	II.	
Hexavalent Chromium	ND	0.0020	mg/L	tt	B3J1045	10/10/13	10/16/13 12:11	EPA 218.6	
Copper	ND	1.0	μg/L	11	B3J1044	10/10/13	10/15/13 11:39	EPA 200,8	
Iron	ND	0.025	mg/L		H.	11	11	"	
Mercury	ND	0.00030	н	н	B3J1107	10/11/13	10/17/13 15:45	EPA 245.1	
Nickel	ND	5.0	μg/L	11	B3J1044	10/10/13	10/15/13 11:39	EPA 200.8	
Lead	ND	1.0	"	'n	.9	н	11-	re	

11

ND

1.0

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

26052 MERIT CIRCLE SUITE 105, LAGUNA HILLS, CALIFORNIA 92653 TELEPHONE: (949) 348-9389 FAX: (949) 348-9115 E-MAIL: SIERRALABS @ SIERRALABS.NET

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project N	umber: [no	n Diego A one] nanda Arch		13)		Report 11/14/13	
	Metals (Dissolved)	by EPA	A 200 Ser	ies Meth	lods			· · · · · · · · · · · · · · · · · · ·
		Sierra A	nalytica	l Labs, Iı	nc.				
Analyte	Result	Reporting Limit		Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B03-2-100913 (1310169-01) Liquid	Sampled: 10/09	/13 17:35	Received:	10/10/13 14	4:21	4			
Silver Arsenic Cadmium	ND ND ND	1.5 3.0 2.0	μg/L "	1	B3J1105 "	10/11/13	10/15/13 12:12	EPA 200.8	
Chromium Hexavalent Chromium	3.1 ND	3.0 0.0020	" mg/L	N- M	" B3J1048	" 10/10/13	n 10/16/13 12:13	" EPA 218.6	
Copper Mercury Nickel	1400 ND 44	1.0 0.00073 5.0	μg/L mg/L μg/L "	11 12 11	B3J1105 B3J1108 B3J1105	10/11/13 10/11/13 10/11/13	10/15/13 12:12 1.0/17/13 15:53 10/15/13 12:12		
Lead Zinc	140 1300	2.0 1.0	n	н	Ω	"	17		
C-B05-4-100913 (1310169-02) Liquid	Sampled: 10/09					-	•		•
Silver Arsenic Cadmium	ND ND ND	1.5 3.0 2.0	μg/L "	1 11 11	B3J1105 "	10/11/13	10/15/13 12:12 "	H	
Chromium Hexavalent Chromium Copper	ND ND 1500	3.0 0.0020 1.0	" mg/L μg/L	n D	" B3J1048 B3J1105	" 10/10/13 10/11/13	" 10/16/13 12:13 10/15/13 12:12		
Mercury Nickel Lead	ND 38 ND	0.00073 5.0 2.0	mg/L μg/L "	1) -1) 71	B3J1108 B3J1105 "	10/11/13 10/11/13	10/17/13 15:53 10/15/13 12:12	EPA 245.1 EPA 200.8	
Zinc C-B06-5A-100913 (1310169-03) Liquid	5600	1.0	" Received	" 1: 10/10/13	" 14:21	11	n	n	
Silver	ND	1.5	μg/L	1	B3J1105	10/11/13	10/15/13 12:12		
Arsenic Cadmium Chromium	ND ND 4.8	3.0 2.0 3.0	n H	11 11 11	11 11 11	11 11	н н 11	14- 14-	
Hexavalent Chromium Copper	ND 58	0.0020 1.0	mg/L μg/L	11 11	B3J1048 B3J1105	10/10/13 10/11/13	10/16/13 12:13 10/15/13 12:12	EPA 218.6 EPA 200.8	
Mercury Nickel Lead	ND ND ND	0.00073 5.0 2.0	mg/L μg/L "	11 11 11	B3J1108 B3J1105 "	10/11/13 10/11/13 "	10/17/13 15:53 10/15/13 12:12 "		
Zinc	330	1.0	1F	**	м	11	n	II-	

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nur Project Nur Project Man	nber: [no	ne]	Airport (20 aenhold	13)		Reported 11/14/13 1	
· · · · · · · · · · · · · · · · · · ·	Metals (I	Dissolved)	by EPA	200 Ser	ies Meth	ods		•	
		Sierra An	alytical	l Labs, Ii	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
C-B07-7-100913 (1310169-04) Liquid	Sampled: 10/09	/13 17:03 R	eceived:	10/10/13 1	4:21				
Copper Zinc	560 1700	1.0 1.0	μg/L "	. "	B3J1105 "	10/11/13 "	10/15/13 12:12	EPA 200.8	<u> </u>
C-B08-8-100913 (1310169-05) Liquid	Sampled: 10/09	/13 17:12 R	eceived:	10/10/13 14	4:21				
Copper Zinc	99 190	1.0 1.0	μg/L "	1 .n	B3J1105 "	10/11/13 "	10/15/13 12:12 "	EPA 200.8	
C-B09-10B-100913 (1310169-06) Liquid	Sampled: 10	/09/13 17:31	Receive	d: 10/10/13	3 14:21				
Copper Zinc	85 920	1.0 1.0	μg/L "	1 1	B3J1105 "	10/11/13 "	10/15/13 12:12	EPA 200.8	
C-B12-9A-100913 (1310169-07) Liquid	Sampled: 10/0	9/13 17:09	Received	i: 10/10/13	14:21				
Copper Zinc	33 160	1.0 1.0	μg/L "	1 "	B3J1105 "	10/11/13	10/15/13 12:12	EPA 200.8	
S-B06-12-100913 (1310169-08) Liquid	Sampled: 10/0	9/13 21:14 H	Received:	10/10/13	14:21				
Silver Arsenic Cadmium Chromium Hexavalent Chromium Copper Mercury Nickel	ND ND ND ND 240 ND ND ND	1.5 3.0 2.0 3.0 0.0020 1.0 0.00073 5.0 2.0	μg/L " " mg/L μg/L mg/L μg/L	1 0 11 11 11 11 11 11 11 11 11 11 11 11	B3J1105 " " B3J1048 B3J1105 B3J1108 B3J1108	10/11/13 " " 10/10/13 10/11/13 10/11/13 10/11/13 "	10/15/13 12:12 " " 10/16/13 12:13 10/15/13 12:12 10/17/13 15:53 10/15/13 12:12 "	" " EPA 218.6 EPA 200.8 EPA 245.1	

AMEC					irport (20	13)						
9177 Sky Park Court Suite A		Project Nu	-	-				Reporte	1:			
San Diego CA, 92123		Project Mar	ager: An	nanda Arch	enhold			11/14/13 1	0:54			
	Triv	alent Chr	omium	by Cale	ulation							
Sierra Analytical Labs, Inc.												
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
C-B03-2-100913 (1310169-01) Liquid	Sampled: 10/09/1	13 17:35 R	eceived:	10/10/13 14	4:21							
Trivalent Chromium	8.0	0.010	mg/L	1	B3J1047	10/10/13	10/16/13 12:21	Calculation				
C-B05-4-100913 (1310169-02) Liquid	Sampled: 10/09/1	13 17:45 R	eceived:	10/10/13 14	4:21							
Trivalent Chromium	ND	0.010	mg/L	1	B3J1047	10/10/13	10/16/13 12:21	Calculation				
C-B06-5A-100913 (1310169-03) Liquid	Sampled: 10/09	0/13 17:10	Received	: 10/10/13	14:21							
Trivalent Chromium	12	0.010	mg/L	1	B3J1047	10/10/13	10/16/13 12:21	Calculation				
S-B06-12-100913 (1310169-08) Liquid	Sampled: 10/09/	13 21:14 1	Received:	10/10/13 1	4:21							
Trivalent Chromium	ND	0.010	mg/L	· 1	B3J1047	10/10/13	10/16/13 12:21	Calculation				
C-B03-2-100913-BLK (1310169-10) Li	quid Sampled: 1	0/09/13 17:	35 Recc	ived: 10/10)/13 14:21							
Trivalent Chromium	ND	0.010	mg/L	1	B3J1047	10/10/13	10/16/13 12:21	Calculation				

· · · · · · · · · · · · · · · · · · ·									
AMEC		Pro	ject: Sa	an Diego A	irport (20	13)			
9177 Sky Park Court Suite A		Project Num	ıber: [n	one]	•	ŗ		Report	ed:
San Diego CA, 92123		Project Mana	nger: An	manda Arch	enhold	• .		11/14/13	10:54
	Trivalent	Chromiun	ı by C	alculation	n (Dissol	lved)			
		Sierra Ana	alytica	al Labs, In	nc.				
	n t	Reporting	** *.		D (1	D 1	4 1 3	NF 41 1	
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B03-2-100913 (1310169-01) Liquid	Sampled: 10/09/	13 17:35 Re	ceived:	10/10/13 1	4:21				
Trivalent Chromium	3.1	0.010	mg/L	1	B3J1049	10/10/13	10/16/13 12:18	Calculation	
C-B05-4-100913 (1310169-02) Liquid	Sampled: 10/09/	13 17:45 Re	ceived	10/10/13 1	4:21				
Trivalent Chromium	ND	0.010	mg/L	1	B3J1049	10/10/13	10/16/13 12:18	Calculation	
C-B06-5A-100913 (1310169-03) Liquid	d Sampled: 10/09	9/13 17:10 H	Receive	d: 10/10/13	14:21	٩			
Trivalent Chromium	4.8	0.010	mg/L	1	B3J1049	10/10/13	10/16/13 12:18	Calculation	
S-B06-12-100913 (1310169-08) Liquid	Sampled: 10/09	/13 21:14 R	eceived	l: 10/10/13 1	14:21				•
Trivalent Chromium	ND	0.010	mg/L	1	B3J1049	10/10/13	10/16/13 12:18	Calculation	

26052 Merit Circle Suite 105, Laguna Hills, California 92653 Telephone: (949) 348-9389 Fax: (949) 348-9115 E-Mail: sierralabs @ sierralabs.net

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nur Project Man	nber: [no	ne]	airport (20	13)		Reported 11/14/13 1	
	Organochlorin	e Pesticid	es and I	PCBs by	EPA M	ethod 60	8		
		Sierra An	alytical	l Labs, I	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B03-2-100913 (1310169-01) Liquid	Sampled: 10/09/	/13 17:35 R	eceived:	10/10/13 1	4:21				
Aldrin	ND	0.075	μg/L	1	B3J1802	10/16/13	10/18/13 09:46	EPA 608	
HCH-alpha	ND	0.010	н	н	н	н	u.	н	
HCH-beta	ND	0.050	u.	n	u.	н	41	н	
HCH-delta	ND	0.10	11	n	11	-11	u.	n	
HCH-gamma (Lindane)	ND	0.20	"	н	11	н	11	n	
Chlordane	ND	0.050	11	н	ji	41	11	n	
4,4′-DDD	ND	0.010	n	н	11	н	11	н.	
4,4´-DDE	ND	0.010	-11	н	11	н	11	n	
4,4′-DDT	ND	0.010	II.	н	u.	н	tt.	n	
Dieldrin	ND	0.020	н	.8	11	н	u.	n.	
Endosulfan I	ND	0.020	U II	н	tt.		0	n	
Endosulfan II	ND	0.050	B	11	u.	н	u	U .	
Endosulfan sulfate	ND	0,050	н	11	11	н	ч	п	
Endrin	ND	0.10	11	n	11	н	ч	n	
Endrin aldehyde	ND	0.050	н	4F	1Ľ	н	9	n	
Heptachlor	ND	0.010	н	n	11	н	11	н	
Heptachlor epoxide	ND	0.010	н	n.	11	н	.0	u.	
Toxaphene	ND	1.0	н	11	н.,	н	U U	n	
PCB-1016	ND	0.50	м	п	11	"	ч	n	
PCB-1221	ND	0.50	. N	u.	н	н		н	
PCB-1232	ND	0.50	и	"	₩ ÷	-8	н	н	
PCB-1242	ND	0.50	н	н	11	н	н	11	
PCB-1248	ND	0.50	н	н	u	н	н	u.	
PCB-1254	ND	0.50	н	и	п	н	н	11	
PCB-1260	ND	0.50	n	н	п	н	n	н	
Surrogate: Decachlorobiphenyl		45.2 %	42-	147	"	n	n	#	
Surrogate: Tetrachloro-meta-xylene		67.2 %	42-	147	"	"	"	н	

S J L R R A

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	mber: [no	n Diego A ne] nanda Arch		13)		Reported 11/14/13 1	
0	rganochlorin	e Pesticid	es and	PCBs by	EPA M	ethod 60	8		
		Sierra Ai	nalytica	l Labs, I	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B06-5A-100913 (1310169-03) Liquid	Sampled: 10/0	9/13 17:10	Received	1: 10/10/13	14:21	1. A. A.			
Aldrin	ND	0.075	μg/L	1	B3J1802	10/16/13	10/18/13 09:46	EPA 608	
HCH-alpha	ND	0.010	11	U	11	н	11	41	
HCH-beta	ND	0.050	н	11	μ	н	н	-11	
HCH-delta	ND	0.10	н	U	н	H.	It	п	
HCH-gamma (Lindane)	ND	0.20	11	u	п	v	11	н	
Chlordane	ND	0.050		н	11	· u	н	11	
4,4′-DDD	ND	0.010	п	. "	н	н	n	-11	
4,4′-DDE	ND	0.010	н	11	н	11	н	11	
4,4′-DDT	ND	0.010	-11	11	n	11	ш	н	
Dieldrin	ND	0.020	-11	H	11	н	u	U	
Endosulfan I	ND	0.020	н	U	n	н	н	.11	
Endosulfan II	ND	0.050	н	u	n	u	н	u	
Endosulfan sulfate	ND	0.050	10	n.	U	11	u.	н	
Endrin	ND	0.10	11	It	97	п	я.	н	
Endrin aldehyde	ND	0.050	н	11	· 0	n	н	"	
Heptachlor	ND	0.010		н	н	-11	. u	н	
Heptachlor epoxide	ND	0.010	11	м.	11	11	9	и	
Toxaphene	ND	1.0	н	U.		н	н	11	
PCB-1016	ND	0.50	н	,11	11	11	н	11	
PCB-1221	ND .	0.50	"	н	н		-11	н	
PCB-1232	ND	0.50	н	11	11	· • •	. 11	н	
PCB-1242	ND	0.50	н	u.	п	п	н	u.	
PCB-1248	ND	0.50	u.	11	ц	IJ	II.	n	
PCB-1254	ND	0.50	u.	н	н	u.	11	н	
PCB-1260	ND	0.50	н	H.	u u	9	11	11	
Surrogate: Decachlorobiphenyl		43.6%	42	-147	"	"	u	"	
Surrogate: Tetrachloro-meta-xylene		66.4 %		-147	n	"	"	"	

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Pr Project Nur Project Man	oject: San mber: [non hager: Ama	e]		13)		Reporter 11/14/13 1	
(Organochlorir					ethod 60	8		
	11 - No	Sierra An	alytical	Labs, I	1c.	· · · · · · · · · · · · · · · · · ·			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
C-B07-7-100913 (1310169-04) Liquid	Sampled: 10/09								
PCB-1016	ND	0.50	μg/L	1	B3J1802	10/16/13	10/18/13 09:46	EPA 608	
PCB-1221	ND	0.50	0	н	11	18	II.	0	
PCB-1232	ND	0.50	н	11	11	11	U.	U.	
PCB-1242	ND	0.50	н	ar i	17	0	н	0	
PCB-1248	ND	0.50	н	Û.	11		li I	n	
PCB-1254	ND	0.50	н	.91	.0	-14	н	n	
PCB-1260	ND	0.50	н	11	и	н	11	n	
Surrogate: Decachlorobiphenyl		72.8 %	42-1	47	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		59.6%	42-1			n	н	"	
C-B08-8-100913 (1310169-05) Liquid	Sampled: 10/09				1.21				
	•					10/1//10	10/10/10 00 1/	N770 1 600	· · · · · · · · · · · · · · · · · · ·
PCB-1016 PCB-1221	ND ND	0.50	μg/L "	1	B3J1802	10/16/13	10/18/13 09:46	EPA 608	
PCB-1221	ND ND	0.50	11	11		и	. N		
PCB-1232	ND	0.50 0.50	11	'n	म		N	. 0	
PCB-1242	ND ND	0.50	11	н	n	n	n	n	
PCB-1248	ND		R	n		n	n		
PCB-1254	ND ND	0.50 0.50	R	.11			IF.	н.	
· · · · · · · · · · · · · · · · · · ·	ND								
Surrogate: Decachlorobiphenyl		45.2 %	42-1		"	"	.11	"	
Surrogate: Tetrachloro-meta-xylene		46.0 %	42-1	47	"	"	"	"	
C-B09-10B-100913 (1310169-06) Liqui	d Sampled: 10	09/13 17:31	Received	: 10/10/13	3 14:21				
PCB-1016	ND	0.50	μg/L	1	B3J1802	10/16/13	10/18/13 09:46	EPA 608	
PCB-1221	ND	0.50	N.	н	н	11	17	0	
PCB-1232	ND	0.50	11	н	н	11	11	0	
PCB-1242	ND	0.50	17	11	н	11	u.		
PCB-1248	ND	0.50	'n	t1	н	11			
PCB-1254	ND	0.50	17	11	11	11	н	u.	
PCB-1260	ND	0.50	11	11	11	"	н	9	
Surrogate: Decachlorobiphenyl		72.0 %	42-1	47	-H	н	"	"	
		/ 2.0 /0	42-147 42-147						

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu Project Ma	mber: [no	ne]	irport (20 enhold	13)		Report 11/14/13	
0	rganochlorin			-		ethod 60	8.		
	· · · · · · · · · · · · · · · · · · ·	Sierra A	nalytical	l Labs, I	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
C-B12-9A-100913 (1310169-07) Liquid	Sampled: 10/0	9/13 17:09	Received	: 10/10/13	14:21				
PCB-1016	ND	0.50	μg/L	1	B3J1802	10/16/13	10/18/13 09:46	EPA 608	
PCB-1221	ND	0.50	11	11	0	11	. н	н	
PCB-1232	ND	0.50	11	0	0	н	If.	н	
PCB-1242	ND	0.50	N	U.	-11.	н	11	u.	
PCB-1248	ND	0.50	н	и	н	W.	U	11	
PCB-1254	ND	0.50	11	u.	н.,	41	м	н	
PCB-1260	ND	0.50	н	я	9	U	ч	UÎ.	
Surrogate: Decachlorobiphenyl		43.6%	42-	147	"	"	n	"	
Surrogate: Tetrachloro-meta-xylene		63.2 %		147	-11	"	"	.11	
-	Sampled: 10/09				14.71				
S-B06-12-100913 (1310169-09) Liquid						10/16/12	10/10/10 00 1/		
Aldrin	ND	0.075	μg/L "	1 "	B3J1802	10/16/13 "	10/18/13 09:46	EPA 608	
HCH-alpha	ND	0.010	11	11		11	н	н	
HCH-beta	ND	0.050		n	11	н	н	н	
HCH-delta	ND	0.10	"	н	n	li li		11	
HCH-gamma (Lindane)	ND	0.20	11			11.	μ	9	
Chlordane	ND	0.050		-11		11	н	n	
4,4′-DDD	ND	0.010	.u	. H		н			
4,4′-DDE	ND	0.010	u.		н	u U			
4,4′-DDT	ND	0.010	11		n.			11.	
Dieldrin	ND	0.020	n	" 11				11	
Endosulfan I	ND	0.020	и		11	n [']	и		
Endosulfan II	ND	0.050	u.		и			n	
Endosulfan sulfate	ND	0.050	"	 11	· n			. 11	
Endrin	ND	0.10		"			17		· ·
Endrin aldehyde	ND	0.050					11		
Heptachlor	ND	0.010	 N			11	.0		
Heptachlor epoxide	ND	0.010			и				
Toxaphene	ND	1.0	н		в	л	11.	11	
PCB-1016	ND	0.50	u.	и.	н	.11	· •		
PCB-1221	ND	0.50	1) 1)		n	н	н	"	
PCB-1232	' ND	0.50	"	u u	n	н		"	
PCB-1242	ND	0.50	17	11		н	м	11	
PCB-1248	ND	0.50	и Л	11	"	и	n	11	
PCB-1254	ND	0.50	,, П	u		"	и.		
PCB-1260	ND	0.50							
Surrogate: Decachlorobiphenyl		87.6 %		147	"	"	.11	"	
Surrogate: Tetrachloro-meta-xylene		114 %	42-	-147	· 11	Ħ	: <i>H</i>	.11	

26052 Merit Circle Suite 105, Laguna Hills, California 92653 Telephone: (949) 348-9389 Fax: (949) 348-9115 E-Mail: sierralabs @ sierralabs.net

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Proj Project Num Project Manaj	ber: [no			13)		Reported 11/14/13 1	
Orga	nochlorir	ie Pesticide: Sierra Ana		•		ethod 608	8		
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
C-B03-2-100913-BLK (1310169-10) Liquid	Sampled:	10/09/13 17:3	5 Rece	eived: 10/1	0/13 14:21	· · · · · · · · · · · · · · · · · · ·			
Aldrin	ND	0.075	μg/L	1	B3J1802	10/16/13	10/18/13 09:46	EPA 608	
HCH-alpha	ND	0.010	0.	н	.0	11	н	n	
HCH-beta	ND	0.050	н	н	. 11	11	н	н	
HCH-delta	ND	0.10	н	. 11	tt.	n	л	н	
HCH-gamma (Lindane)	ND	0.20	,н	n	н	н	11	. u	
Chlordane	ND	0.050	11	11	H.	n	1f	11	
4,4′-DDD	ND	0.010	۱f	н	Π.	H	11	11	
4,4´-DDE	ND	0.010	11	н	н	11	11	м	
4,4′-DDT	ND	0.010	.0	н	н	-10	11	11	
Dieldrin	ND	0.020	14	n	и	11	n	11	
Endosulfan I	ND	0.020	н	.0	.91	11	n	н	
Endosulfan II	ND	0.050	н	11	п	11	n	n	
Endosulfan sulfate	ND	0.050	н	11	11	н	н	n	
Endrin	ND	0.10	л	9	ų	н	н	n	
Endrin aldehyde	ND	0.050	л	11	17	н	н	"	
Heptachlor	ND	0.010		1F	în -	n	n	н	
Heptachlor epoxide	ND	0.010	11	11	IF.	н	n	н	
Foxaphene	ND	1.0	11	υ,	u II	н	н	н	
PCB-1016	ND	0.50	11	0	U.		п	н	
PCB-1221	ND	0.50	11	B	11	н	л	н	
PCB-1232	ND	0,50	н	8	н	н	н	н	
PCB-1242	ND	0.50	n	n	n	н	н	н	
PCB-1248	ND	0,50	n	n	n	н	н	н	
PCB-1254	ND	0.50	н	н	n	н	н	н	
PCB-1260	ND	0.50	н	н	n	п	н	н	
Surrogate: Decachlorobiphenyl		52.4 %	42.	-147	п	"	"	"	
Surrogate: Tetrachloro-meta-xylene		52.4 % 42-147 75.2 % 42-147			"	"	"	"	

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123			nber: [non	e]	Airport (20 Menhold	13)		Reported: 11/14/13 10	
	Total Petr	oleum Hyd	lrocarbo	ns (TP	H) by G(C/FID			
		Sierra An	alytical	Labs, I	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B03-2-100913 (1310169-01) Liquid	Sampled: 10/09	/13 17:35 R	eceived: 1	0/10/13 1	4:21				
Diesel Range Organics (C10-C24)	ND	0.050	mg/L	1	B3J1729	10/11/13	10/17/13 16:1	1 EPA 8015B	D-42
Surrogate: o-Terphenyl Jet-A	0.40	556 % 0.050	60-1 "	75	"	"	<i>11</i>	11 11	S-07
Surrogate: o-Terphenyl Oil Range Organics (C22-C36)	0.64	<i>556 %</i> 0.050	60-1	75	"	<i>11</i> 11	<i>n</i> u	л В	S-07
Surrogate: o-Terphenyl	l S 10/	556 %	60-1 Beesiwada		"	"	"	Л	S-02
C-B06-5A-100913 (1310169-03) Liquid Diesel Range Organics (C10-C24)	ND	0.050	mg/L	10/10/13	B3J1729	10/11/13	10/17/13 16:2	3 EPA 8015B	
Surrogate: o-Terphenyl Jet-A	ND	<i>164 %</i> 0.050	60-1		// //	<i>n</i> 10/11/15	10/17/15 10:2 //	" "	
Surrogate: o-Terphenyl Oil Range Organics (C22-C36)	ND	<i>164 %</i> 0.050	<i>60-1</i>	75 "	// H	"	и	<i>11</i> 11	
Surrogate: o-Terphenyl		164 %	60-1	75	п	"	·#	II.	
C-B07-7-100913 (1310169-04) Liquid	Sampled: 10/09)/13 17:03 R	eceived: 1	0/10/13 1	4:21		· · · ·		
Diesel Range Organics (C10-C24)	ND	0.050	mg/L	1	B3J1729	10/11/13	10/17/13 16:3	4 EPA 8015B	D-42
Surrogate: o-Terphenyl Jet-A	0.24	<i>307 %</i> 0.050	60-1 "	75 "	<i>11</i> 11	<i>H</i> 11	// . 1)	<i>11</i> 11	S-03
Surrogate: o-Terphenyl Oil Range Organics (C22-C36)	0.39	<i>307 %</i> 0.050	60-1 "	75	<i>H</i> 11	<i>11</i> H	<i>n</i> 11	<i>11</i> 11	S-0
Surrogate: o-Terphenyl		307 %	60-1	75	11	"	"	11	S-03
C-B08-8-100913 (1310169-05) Liquid	Sampled: 10/09	9/13 17:12 R	eceived: 1	0/10/13 1	4:21				
Diesel Range Organics (C10-C24)	ND	0,050	mg/L	1	B3J1729	10/11/13	10/17/13 16:4	5 EPA 8015B	
Surrogate: o-Terphenyl Jet-A	ND	<i>315 %</i> 0.050	60-1 "	75 "	<i>it</i> It	<i>II</i> H	<i>11</i> 11	// N	S-0;
Surrogate: o-Terphenyl Oil Range Organics (C22-C36)	0.42	<i>315 %</i> 0.050	60-1 "	75 "	<i>II</i> 11	# 11	<i>11</i> 11	// .H	S-0
Surrogate: o-Terphenyl		315 %	60-1	75	#		"	"	S-0

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	oject: San I mber: [none aager: Amar]				Reported: 11/14/13 10	
	Total Petr	oleum Hyd	lrocarbor	ıs (TPI	H) by G(C/FID			
		Sierra An	alytical I	labs, I	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B09-10B-100913 (1310169-06) Liquid	Sampled: 10	/09/13 17:31	Received:	10/10/13	3 14:21				
Diesel Range Organics (C10-C24)	ND	0.050	mg/L	1	B3J1729	10/11/13	10/17/13 16:5	7 EPA 8015B	D-42
Surrogate: o-Terphenyl Jet-A	0.26	<i>389 %</i> 0.050	60-17	'5 "	. <i>11</i> 11	17 11	// N	<i>11</i> 11	S-07
Surrogate: o-Terphenyl Oil Range Organics (C22-C36)	0.53	<i>389 %</i> 0.050	60-17 "	'5 "	<i>11</i> 11	<i>11</i> 11	<i>11</i> 11	<i>11</i> 11	S-07
Surrogate: o-Terphenyl	Sampled: 10/	389 %	60-17	•	"	"	II	n	S-07
C-B12-9A-100913 (1310169-07) Liquid Diesel Range Organics (C10-C24)	ND	0.050	mg/L	1	B3J1729	10/11/13	10/17/12 17:0	8 EPA 8015B	
Surrogate: o-Terphenyl Jet-A	ND	70.8 %	60-17	75 "	11 11 11	"	" "	" "	
Surrogate: o-Terphenyl Oil Range Organics (C22-C36)	ND	70.8 % 0.050	60-17	'5 "	"	<i>11</i> 11	<i>n-</i> 11	<i>11</i> N	
Surrogate: o-Terphenyl C-B03-2-100913-BLK (1310169-10) Liqu	id Samplad	70.8 % 10/09/13 17:	60-17		" 0/13 14.91	11	и	"	

Received: 10/10/13 14:21 oled: 10/09/13 17:35

Diesel Range Organics (C10-C24)	ND	0.050	mg/L	1 B3J1729 1	10/11/13	10/17/13 17:19 EPA 8015B		
Surrogate: o-Terphenyl		80.8 %	60-175		"	"	"	"
Jet-A	ND	0.050	н		н	11	. 11	н
Surrogate: o-Terphenyl		80.8 %	60-175		n	"	"	H.
Oil Range Organics (C22-C36)	ND	0.050	11	4	n	н	11	н
Surrogate: o-Terphenyl		80.8 %	60-175		n	"	"	"

AMEC	Project: San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	11/14/13 10:54

Polynuclear Aromatic Compounds by EPA Method 8310

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit		• Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B03-2-100913 (1310169-01) Liquid	Sampled: 10/09/	/13 17:35	Received	10/10/13 1	4:21				
Naphthalene	ND	0.500	μg/L	1	B3J2247	10/16/13	10/22/13 13:42	EPA 8310	
Acenaplithylene	ND	1.00	н	9	11	н	н	н	
Acenaphthene	ND	1.00	н	н	n	н	u.	н	
Fluorene	ND	0.100	11	н	н	11			
Phenanthrene	ND	0.100	11	"	It	11	11	11	
Anthracene	ND	0.0500	11		, II	11	н	и	
Fluoranthene	ND	0.100	н	11	11	н	n	н	
Pyrene	ND	0.100	II.	н	n	и	n	II	
Benzo (a) anthracene	ND	0.0500	11	н.	н.,	-11	11	n.	
Chrysene	ND	0.100	11	P	н	·11	11	11	
Benzo (b) fluoranthene	ND	0.100	11	"	u.	11	н	n	
Benzo (k) fluoranthene	ND	0.0500	п	11	11	л	n	B	
Benzo (a) pyrene	ND	0.0500	н	11	0	н	11	11	
Dibenzo(a,h)anthracene	ND	0.100	0	н	н	н	11	u.	
Benzo (g,h,i) perylene	ND	0.100	11	. 11	н	-It	11	11	
Indeno (1,2,3-cd) pyrene	ND	0.100	н	11	0	-11	п	. л	
Surrogate: Decafluorobiphenyl		71.4 %	30)-115	II.	"	ļ	л.	

C-B06-5A-100913 (1310169-03) Liquid Sampled: 10/09/13 17:10 Received: 10/10/13 14:21

	Sumpress Act								
Naphthalene	ND	0.500	μg/L	1	B3J2247	10/16/13	10/22/13 13:42	EPA 8310	
Acenaphthylene	ND	1.00	н	0	11	11	н	11	
Acenaphthene	ND	1.00	II.	11	9	U II	н	В	
Fluorene	ND	0.100	θ.	н	n	н	II.	н	
Phenanthrene	ND	0.100	9	U.	н	н	11	u.	
Anthracene	ND	0.0500	, n	n	н	п	11	n.	
Fluoranthene	ND	0.100	н	9	11	II.	11	11	
Pyrene	ND	0.100	n	11	п	11	11	-0	
Benzo (a) anthracene	ND	0.0500	н	9	41	11	11	11	
Chrysene	ND	0.100	n	11	97	9	н	-11	
Benzo (b) fluoranthene	ND	0.100	II.	н	11	97	11	.0	
Benzo (k) fluoranthene	ŅD	0.0500	11	н	11	n.	n	л	
Benzo (a) pyrene	ND	0.0500	97	н	19	9	n-	0	
Dibenzo(a,h)anthracene	ND	0.100	11	н	n	11	н	.D	
Benzo (g,h,i) perylene	ND	0.100	11	н	11	11		р	
Indeno (1,2,3-cd) pyrene	ND	0.100	11	н	17	11	n	- 11	
Surrogate: Decafluorobiphenyl		59.8 %	30-1	15	н	и	"	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

26052 MERIT CIRCLE SUITE 105, LAGUNA HILLS, CALIFORNIA 92653 TELEPHONE: (949) 348-9389 FAX: (949) 348-9115 E-MAIL: SIERRALABS @ SIERRALABS.NET

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project N	umber: [nc		Airport (20 Menhold	13)		Reporte 11/14/13 1	
1	Polynuclear A		-	•		hod 831	0		
		Sierra A	nalytica	l Labs, I	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
S-B06-12-100913 (1310169-09) Liquid	Sampled: 10/0	9/13 17:55	Received:	10/10/13	14:21				
Naphthalene	ND	0.500	μg/L	1	B3J2247	10/16/13	,10/22/13 13:42	EPA 8310	
Acenaphthylene	ND	1.00	н	11	n	n.	11	u	
Acenaphthene	ND	1.00	н	н	н	"	9	u.	
Fluorene	ND	0.100	н	н	н	11	17	11	
Phenanthrene	ND	0.100	и	и	n	11	11	II	
Anthracene	ND	0.0500	9	п	н.	11	11	II.	
Fluoranthene	ND	0.100	41	11	п	11	11	11°	
Pyrene	ND	0.100	11	н	н	9	н.	U ¹	
Benzo (a) anthracene	ND	0.0500	11	11	II.	11	н	11	
Chrysene	ND	0.100	17	u.	R.	11	11	1P	
Benzo (b) fluoranthene	ND	0.100	N	11.	90. ¹	11	и	1F	
Benzo (k) fluoranthene	ND	0.0500	н.	"	11	υ	11	D.	
Benzo (a) pyrene	ND	0.0500	11	11	11	11	11	11	
Dibenzo(a,h)anthracene	ND	0.100	11	11	n.	1L	14	U.	
Benzo (g,h,i) perylene	ND	0.100	11	11	11	11	14	D	
Indeno (1,2,3-cd) pyrene	ND	0.100	н	11.	11	11	11	H.	
Surrogate: Decafluorobiphenyl		39.8 %	30-	115	II	"	п	"	
C-B03-2-100913-BLK (1310169-10) Lid	uid Sampled	: 10/09/13 17	:35 Rece	ived: 10/1	0/13 14:21				
Naphthalene	ND	0.500	μg/L	1	B3J2247	10/16/13	10/22/13 13:42	EPA 8310	

Naphthalene	ND	0.500	µg/L	1	B3J2247	10/16/13	10/22/13 13:42	EPA 8310	
Acenaphthylene	ND	1.00	н	14	11	н	н	n	
Acenaphthene	ND	1.00	8		11	н	н	n	
Fluorene	ND	0.100	н	11	11	н	19	"	
Phenanthrene	ND	0.100	м	н	17	п	11	n	
Anthracene	ND	0.0500	н	н	11	н	11	u -	
Fluoranthene	ND	0.100	м	н	W.	н	11	п 1	
Pyrene	ND	0.100	н	11	11	н -	. "	II.	
Benzo (a) anthracene	ND	0.0500	н	н.	17	0	"	II.	
Chrysene	ND	0.100	н	11	W.	11	"	IT	
Benzo (b) fluoranthene	ND	0.100	н	11	17	11,	"	н	
Benzo (k) fluoranthene	ND	0.0500	н	11	11	11	tt.	11	
Benzo (a) pyrene	ND	0.0500		17	H.	9	n	н	
Dibenzo(a,h)anthracene	ND	0.100	· . n	11.	N.		n	н	
Benzo (g,h,i) perylene	ND	0.100	11-	0	н	u.	н	и	
Indeno (1,2,3-cd) pyrene	ND	0.100	U	11	11	n	н	н	
Surrogate: Decafluorobiphenyl		62.0 %	30-1	15	"	"	".	II.	

	AMEC	Project: San Diego Airport (2013)	
	9177 Sky Park Court Suite A	Project Number: [none]	Reported:
•	San Diego CA, 92123	Project Manager: Amanda Archenhold	11/14/13 10:54

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3J2242 - General Preparation										•
Blank (B3J2242-BLK1)				Prepared a	& Analyze	ed: 10/10/	13			
Ammonia as N	ND	0.100	mg/L							
Biochemical Oxygen Demand	ND	2,00	11							
Chemical Oxygen Demand	ND	0.100	n							
Methylene Blue Active Substances	ND	0.0500	н							
Total Hardness	ND	0,400	0							
Total Suspended Solids	ND	1.00	11							
LCS (B3J2242-BS1)				Prepared a	& Analyze	ed: 10/10/	13			
Ammonia as N	4,85	0.100	mg/L	5.00		97.0	85-115			
Biochemical Oxygen Demand	206	2.00	11	198		104	70-130			
Chemical Oxygen Demand	289	0.100	н	300		96.3	85-115			
Methylene Blue Active Substances	0,440	0.0500	и	0.500		88.0	85-115			
Total Hardness	97.4	0.400	0	100		97.4	85-115		•	
Duplicate (B3J2242-DUP1)	Sou	urce: 131016	9-01	Prepared	& Analyze	ed: 10/10/	13			
Ammonia as N	23.2	2.50	mg/L		24.5			5.45	15	
Biochemical Oxygen Demand	198	2.00	11		210			5.88	30	
Chemical Oxygen Demand	1060	0.100	11		1100			3.70	15	
Methylene Blue Active Substances	0.510	0.0500	н		0.480			6.06	15	
Fotal Hardness	350	0.400	11		343			2.02	15	
Total Suspended Solids	100	1.00	М		102			1.98	15	
Matrix Spike (B3J2242-MS1)	So	urce: 131016	9-01	Prepared	& Analyze	ed: 10/10/	13			
Ammonia as N	28.0	2.50	ing/L	5.00	24.5	70,0	70-130			
Biochemical Oxygen Demand	. 390	2.00	н	198	210	90.9	70-130			
Chemical Oxygen Demand	1380	0.100	н	300	1100	93.3	70-130			
Methylene Blue Active Substances	1.04	0,0500	n.	0.500	0.480	112	70-130			
Total Hardness	432	0.400	II.	100	343	89,0	70-130			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

26052 MERIT CIRCLE SUITE 105, LAGUNA HILLS, CALIFORNIA 92653 TELEPHONE: (949) 348-9389 FAX: (949) 348-9115 E-MAIL: SIERRALABS @ SIERRALABS.NET

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	mber: [n	in Diego A one] nanda Arch		013)			Reporte 11/14/13	
	Metals by	EPA 200 Se	eries M	ethods - Q	uality C	ontrol				
		Sierra Ar	alytica	ll Labs, I	nc.					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3J1044 - EPA 200 Series										
Blank (B3J1044-BLK1)				Prepared:	10/10/13	Analyzed	l: 10/15/13			
luminum	ND	25	μg/L							
arsenic	ND	3.0	0							
Cadmium	ND	2.0	н							
Chromium	ND	3.0	11							
Copper	ND	1.0								
ron	ND	0.025	mg/L							
ead	ND	1.0	μg/L			н. 1				
lickel	ND	5.0	11							
ilver	ND	1.5	11							
Linc	ND	1.0	11							
LCS (B3J1044-BS1)				Prepared:	10/10/13	Analyzed	l: 10/15/13			
luminum	95.4	25	μg/L	100		95.4	85-115			
rsenic	85.6	3.0	n	100		85.6	85-115			
Cadmium	103	2.0	в	100		103	85-115			
Chromíum	114	3.0	н	100		114	85-115			
Copper	107	1.0	н	100		107	85-115			
ron	0.103	0.025	mg/L	0.100		103	85-115			
ead	85.6	1.0	μg/L	100		85.6	85-115			
lickel	94.3	5.0	н	100		94.3	85-115			
liver	107	1.5	н	100		107	85-115			
Line	85.2	1.0	н	100		85.2	85-115			
Aatrix Spike (B3J1044-MS1)	So	urce: 131016	9-10	Prepared:	10/10/13	Analyzed	l: 10/15/13			
luninum	92.8	25	μg/L	100	ND	92.8	70-130			
Arsenic	102	3.0	. н	100	ND	102	70-130			
Cadmium	99.6	2.0	н	100	ND	99.6	70-130			
Thromium	103	3.0	11	100	ND	103	75-130			
Copper	110	1.0	11	100	0.30	110	70-130			
ron	0.102	0.025	mg/L	0.100	ND	102	70-130			
lead	78.6	1.0	μg/L	100	ND	78.6	70-130			
lickel	95.1	5.0	n	100	ND	95.1	70-130			
ilver	105	1.5	н	100	ND	105	70-130			
Linc	90.7	1.0	n.	100	ND	90.7	70-130			

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	mber: [n	n Diego Ai one] nanda Arche		013)		5	Reporte 11/14/13	
	Metals by l	EPA 200 Se	eries M	ethods - Qı	uality Co	ontrol				
•		Sierra An	alytica	ul Labs, In	ıc.					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3J1044 - EPA 200 Series				in .						
Matrix Spike Dup (B3J1044-MSD1)	Sou	rce: 131016	9-10	Prepared:	10/10/13	Analyzed:	10/15/13			
Aluminum	95.4	25	μg/L	100	ND	95.4	70-130	2.76	30	
Arsenic	81.9	3.0	н	100	ND	81.9	70-130	21.9	30	
Cadmium	102	2.0	n	100	ND	102	70-130	2.38	30	
Chromium	102	3.0	n	100	ND	102	75-130	0.976	30	
Copper	109	1.0	11	100	0.30	109	70-130	0.913	30	
Iron	0.0967	0.025	mg/L	0.100	ND	96.7	70-130	5,33	30	
Lead	85.8	1.0	μg/L	100	ND	85,8	70-130	8.76	30	
Nickel	104	5.0	91	100	ND	104	70-130	8,94	30	
Silver	104	1.5	8	100	ND	104	70-130	0.957	30	
Zinc	111	1.0	11	100	ND	111	70-130	20.1	30	
Batch B3J1045 - EPA 200 Series										
Blank (B3J1045-BLK1)				Prepared:	10/10/13	Analyzed:	10/16/13			
Hexavalent Chromium	ND	0.0020	mg/L							
LCS (B3J1045-BS1)				Prepared:	10/10/13	Analyzed:	10/16/13			
Hexavalent Chromium	0.00294	0.0020	mg/L	0.00300		98.0	85-115			
Matrix Spike (B3J1045-MS1)	Sou	irce: 131016	9-10	Prepared:	10/10/13	Analyzed:	10/16/13			
Hexavalent Chromium	0.00262	0.0020	mg/L	0.00300	ŊD	87.3	80-120			
Matrix Spike Dup (B3J1045-MSD1)	Sou	ırce: 131016	9-10	Prepared:	10/10/13	Analyzed:	10/16/13			
Hexavalent Chromium	0.00313	0.0020	mg/L	0.00300	ND	104	80-120	17.7	20	
Batch B3J1107 - EPA 200 Series						,				
Blank (B3J1107-BLK1)		,		Prepared:	10/11/13	Analyzed:	10/17/13			
Mercury	ND	0.00030	mg/L	· · ·						

26052 Merit Circle Suite 105, Laguna Hills, California 92653 Telephone: (949) 348-9389 Fax: (949) 348-9115 E-Mail: sierralabs @ sierralabs.net

Г

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123	Metals by I	Project Nur Project Mar	mber: [n iager: A	manda Arch	enhold				Reporte 11/14/13 1	
		Sierra An	alytic	al Labs, Iı	nc.					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3J1107 - EPA 200 Series										
LCS (B3J1107-BS1)				Prepared:	10/11/13	Analyzed	: 10/17/13			
Mercury	0.00103	0.00030	mg/L	0.00100		103	75-125			
Matrix Spike (B3J1107-MS1)	Sou	rce: 131014	6-01	Prepared:	10/11/13	Analyzed	: 10/17/13			
Mercury	0.00096	0.00030	mg/L	0.00100	0.00007	89.0	75-125			
Matrix Spike Dup (B3J1107-MSĐ1)	Sou	rce: 131014	6-01	Prepared:	10/11/13	Analyzed	: 10/17/13			
Mercury	0.00097	0.00030	mg/L	0.00100	0.00007	90.0	75-125	1.04	20	

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nur	nber: [n	in Diego Ai one] nanda Arche	• •	013)			Reporte 11/14/13 1	
Met	als (Dissolved	•		ies Method 1] Labs, In	-	lity Contr	ol			
		Reporting		Spike	Source		%REC	·····	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B3J1048 - EPA 200 Series							•		•	
Blank (B3J1048-BLK1)				Prepared:	10/10/13	Analyzed:	10/16/13		r	
Hexavalent Chromium	ND	0.0020	mg/L							
LCS (B3J1048-BS1)				Prepared	10/10/13	Analyzed:	10/16/13			
Hexavalent Chromium	0.00279	0,0020	mg/L	0.00300	10/10/10	93.0	85-115			
		101010		.	10/10/10		10/16/10			
Matrix Spike (B3J1048-MS1) Hexavalent Chromium	0.00298	rce: 1310169 0.0020	9-08 mg/L	0.00300	ND	Analyzed: 99.3	80-120			
Hexavalent Chroinium	0.00298	0.0020	ing/L	0.00300	ND	99.5	80-120			
Matrix Spike Dup (B3J1048-MSD1)	Sou	rce: 1310169	9-08	Prepared:	10/10/13	Analyzed:	10/16/13		· .	
Batch B3J1105 - EPA 200 Series				· · · · ·	10/11/10		10/15/10			
Blank (B3J1105-BLK1) Arsenic	ND	3.0	μg/L	Prepared:	10/11/13	Analyzed:	10/15/13			
Cadmium	ND	2.0	μg/L "							
Chromium	ND	3.0	n							
Copper	ND	1.0	n							
Lead	ND	2.0	п							
Nickel	ND	5.0	11							
	ND	1.5	n							
Silver	ND ND	1.5 1.0	н				•			
Silver Zinc				Prepared:	10/11/13	Analyzed	10/15/13			
Silver Zinc LCS (B3J1105-BS1)			μg/L	100	10/11/13	Analyzed: 104	10/15/13 85-115			
Silver Zinc LCS (B3J1105-BS1) Arsenic	ND	1.0	" μg/L "	-	10/11/13		85-115 85-115			
Silver Zinc LCS (B3J1105-BS1) Arsenic Cadmium	ND 104 110 102	1.0 3.0 2.0 3.0	н µg/L п	100 100 100	10/11/13	104 110 102	85-115 85-115 85-115			
Silver Zinc LCS (B3J1105-BS1) Arsenic Cadmium Chromium	ND 104 110 102 115	1.0 3.0 2.0 3.0 1.0	н µg/L п п	100 100 100 100	10/11/13	104 110 102 115	85-115 85-115 85-115 85-115			
Silver Zinc LCS (B3J1105-BS1) Arsenic Cadmium Chromium Copper Lead	ND 104 110 102 115 107	1.0 3.0 2.0 3.0 1.0 2.0	н µg/L п п п	100 100 100 100 100	10/11/13	104 110 102 115 107	85-115 85-115 85-115 85-115 85-115			
Silver Zinc LCS (B3J1105-BS1) Arsenic Cadmium Chromium Copper Lead Nickel	ND 104 110 102 115 107 109	1.0 3.0 2.0 3.0 1.0 2.0 5.0	н µg/L п п п п	100 100 100 100 100 100	10/11/13	104 110 102 115 107 109	85-115 85-115 85-115 85-115 85-115 85-115			
Silver Zinc LCS (B3J1105-BS1) Arsenic Cadmium Chromium Copper Lead Nickel Silver Zinc	ND 104 110 102 115 107	1.0 3.0 2.0 3.0 1.0 2.0	н µg/L п п п	100 100 100 100 100	10/11/13	104 110 102 115 107	85-115 85-115 85-115 85-115 85-115			

LCS (B3J1108-BS1)

Mercury

AMEC 9177 Sky Park Court Suite A	Project: Project Number:	San Diego Airport (2013) [none]	Reported:
San Diego CA, 92123	Project Manager:	Amanda Archenhold	11/14/13 10:54
Met	als (Dissolved) by EPA 200 S	Series Methods - Quality Control	

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B3J1105 - EPA 200 Series										
Matrix Spike (B3J1105-MS1)	Sot	irce: 131016	9-01	Prepared:	10/11/13	Analyzed	1: 10/15/13			
Arsenic	89.7	3.0	μg/L	100	ND	89.7	70-130			
Cadmium	104	2.0		100	ND	104	70-130			
Chromium	112	3.0	н	100	3.1	109	70-130			
Copper	1420	1.0	н	100	1400	20.0	70-130			QM-0
Lead	208	2.0	н	100	140	68.0	70-130			QM-0
Nickel	166	5.0	н	100	44	122	70-130			
Silver	112	1.5	н	100	ND	112	70-130			
Zinc	1250	1.0	н	100	1300	NR	70-130			QM-0
Matrix Spike Dup (B3J1105-MSD1)	So	urce: 131016	Ə-01	Prepared:	10/11/13	Analyzed	l: 10/15/13			
Arsenic	104	3.0	μg/L	100	ND	104	70-130	14.8	30	
Cadmium	102	2.0	н	100	ND	102	70-130	1.94	30	
Chromíum	110	3.0	11	100	3.1	107	70-130	1.80	30	
Copper	1360	1.0	11.	100	1400	NR	70-130	4.32	30	QM-0
Lead	211	2.0	u.	100	140	71.0	70-130	1.43	30	
Nickel	170	5.0	11	100	44	126	70-130	2.38	30	
Silver	109	1.5	11	100	ND	109	70-130	2.71	30	
Zinc	1180	1.0	11	100	1300	NR	70-130	5.76	30	QM-0
Batch B3J1108 - EPA 200 Series								. <u></u>		
Blank (B3J1108-BLK1)				Prepared:	10/11/13	Analyzed	l: 10/17/13			
Mercury	ND	0.00073	mg/L					-		

Prepared: 10/11/13 Analyzed: 10/17/13

104

80-120

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

0.00104

0.00073

mg/L

0.00100

Project: San Diego Airport (2013)	
Project Number: [none]	Reported:
Project Manager: Amanda Archenhold	11/14/13 10:54
	Project Number: [none]

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Roburt					, inche	Linito		- Califit	
Batch B3J1108 - EPA 200 Series										
Matrix Spike (B3J1108-MS1)	Sou	rce: 131016	9-01	Prepared:	10/11/13	Analyzed	: 10/17/13			
Mercury	0.00128	0.00073	mg/L	0,00100	ND	128	80-120			QM-0
Matrix Spike Dup (B3J1108-MSD1)	Sou	rce: 131016	9-01	Prepared:	10/11/13	Analyzed	: 10/17/13			
Mercury	0.00124	0.00073	mg/L	0.00100	ND	124	80-120	3.17	20	OM-0

AMEC	Project: S	San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number:	[none]	Reported:
San Diego CA, 92123	Project Manager:	Amanda Archenhold	11/14/13 10:54

Organochlorine Pesticides and PCBs by EPA Method 608 - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
······································				Lotor	robuit	, indee			Linit	Notes
Batch B3J1802 - EPA 3510C Sep F	unnel									
Blank (B3J1802-BLK1)				Prepared:	10/17/13	Analyzed	: 10/18/13			
Aldrin	ND	0.075	μg/L							
PCB-1016	ND	0.50	11							
HCH-alpha	ND	0.010	II.							
PCB-1221	ND	0.50	11							
HCH-beta	ND	0.050	н.							
PCB-1232	ND	0.50	н							
HCH-delta	ND	0.10	н							
PCB-1242	ND	0.50	н							
HCH-gamma (Lindane)	ND	0.20	0							
PCB-1248	ND	0.50	9							
Chlordane	ND	0.050	n							
PCB-1254	ND	0.50	tt.							
4,4´-DDD	ND	0.010	11							
PCB-1260	ND	0.50	п							
4,4′-DDE	ND	0.010								
4,4´-DDT	ND	0.010	0							
Dieldrin	ND	0.020	0							
Endosulfan I	ND	0.020	0							
Endosulfan II	ND	0.050	n							
Endosulfan sulfate	ND	0,050	н							
Endrin	ND	0.10	н							
Endrin aldehyde	ND	0.050	н							
Heptachlor	ND	0.010	н							
Heptachlor epoxide	ND	0.010	0							
Toxaphene	ND	1.0	н							
PCB-1016	ND	0.50	n							
PCB-1221	ND	0.50	н							
PCB-1232	ND	0.50	н							
PCB-1242	ND	0.50	0							
PCB-1248	ND	0.50	п							
PCB-1254	ND	0.50	п							
PCB-1260	ND	0.50	n							
			"	0.050		<u> </u>				
Surrogate: Decachlorobiphenyl	0.130		"	0.250		52.0	42-147			
Surrogate: Tetrachloro-meta-xylene	0.229			0.250		91.6	42-147			
Surrogate: Decachlorobiphenyl	0.130		"	0.250		52.0	42-147			
Surrogate: Tetrachloro-meta-xylene	0.229		"	0.250		91.6	42-147			

AMEC	Project: San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	11/14/13 10:54

Organochlorine Pesticides and PCBs by EPA Method 608 - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	. Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3J1802 - EPA 3510C Sep	o Funnel								· · · ·	
LCS (B3J1802-BS1)				Prepared:	10/17/13	Analyzed	: 10/18/13			
Aldrin	0.0740	0.075	μg/L	0.0800		92.5	80-120			
HCH-gamına (Lindane)	0.0812	0.20	н	0.0800		102	80-120			
PCB-1260	2,14	0.50	v	2.00		107	80-120			
4,4′-DDT	0.184	0.010	я.	0.200		92.0	80-120			
Dieldrin	0.180	0.020	19	0.200		90.0	80-120			
Heptachlor	0.0837	0.010	н	0.0800		105	80-120			
LCS (B3J1802-BS2)				Prepared:	10/17/13	Analyzed	: 10/18/13			
Aldrin	0.0857	0.075	μg/L	0.0800		107	80-120			
HCH-gamma (Lindane)	0.0850	0.20	.11	0.0800		106	80-120			
PCB-1260	2.24	0.50	n	2.00		112	80-120			
4,4′-DDT	0.174	0.010	'n	0.200		87.0	80-120			
Dieldrin	0.176	0.020	ц	0.200		88.0	80-120			
Heptachlor	0.0802	0.010	n	0.0800		100	80-120			
LCS Dup (B3J1802-BSD1)				Prepared:	10/17/13	Analyzed	: 10/18/13			
Aldrin	0.0824	0.075	μg/L	0.0800		103	80-120	10.7	30	
HCH-gamma (Lindane)	0.0804	0.20	н	0.0800		100	80-120	0.990	30	
PCB-1260	2.33	0.50	л	2.00		116	80-120	8.50	30	
4,4′-DDT	0.190	0.010	II.	0.200		95.0	80-120	3.21	30	
Dieldrin	0.172	0.020	11	0.200		86,0	80-120	4,55	30	
Heptachlor	0.0821	0.010	11	0.0800		103	80-120	1.93	30	

	AMEC	Project:	San Diego Airport (2013)	
I	9177 Sky Park Court Suite A	Project Number:	[none]	Reported:
l	San Diego CA, 92123	Project Manager:	Amanda Archenhold	11/14/13 10:54

Total Petroleum Hydrocarbons (TPH) by GC/FID - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3J1729 - EPA 3510C Sep	Funnel									
Blank (B3J1729-BLK1)				Prepared:	10/11/13	Analyzed	: 10/17/13			
Diesel Range Organics (C10-C24)	ND	0.050	mg/L							
Jet-A	ND	0.050	11							
Oil Range Organics (C22-C36)	ND	0.050	н							
Surrogate: o-Terphenyl	0.0248		"	0.0250		99.2	60-175			
Surrogate: o-Terphenyl	0.0248		11	0.0250		<i>99.2</i>	60-175			
Surrogate: o-Terphenyl	0.0248		II ^e	0.0250		99.2	60-175			
LCS (B3J1729-BS1)				Prepared:	10/11/13	Analyzed	: 10/17/13			
Diesel Range Organics (C10-C24)	0.439	0.050	mg/L	0.500		87.8	80-120			
Diesel Range Organics (C10-C24)	0.439	0.050	n	0.500		87.8	80-120			
Diesel Range Organics (C10-C24)	0.439	0.050	н	0.500		87.8	80-120			
LCS (B3J1729-BS2)				Prepared:	10/11/13	Analyzed	: 10/17/13			
Diesel Range Organics (C10-C24)	0.458	0.050	mg/L	0,500		91.6	80-120			
Diesel Range Organics (C10-C24)	0.458	0.050	. 0	0.500		91.6	80-120			
Diesel Range Organics (C10-C24)	0.458	0.050	11 [.]	0.500		91.6	80-120			
LCS Dup (B3J1729-BSD1)				Prepared:	10/11/13	Analyzed	: 10/17/13			
Diesel Range Organics (C10-C24)	0.462	0.050	mg/L	0.500		92.4	80-120	5.11	30	
Diesel Range Organics (C10-C24)	0.462	0.050	D	0.500		92.4	80-120	5.11	30	
Diesel Range Organics (C10-C24)	0.462	0.050	n	0.500		92.4	80-120	5.11	30	

AMEC	Project: San Diego Airport (2013	3)
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	11/14/13 10:54

Polynuclear Aromatic Compounds by EPA Method 8310 - Quality Control

Sierra	Analytical	Labs.	Inc.
DIVITA	<i>many</i> tran	1.403,	******

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3J2247 - EPA 3510C Sep	Funnel			•						
Blank (B3J2247-BLK1)				Prepared:	10/16/13	Analyzed	: 10/22/13			
Naphthalene	ND	0.500	μg/L							
Acenaphthylene	ND	1.00	u							
Acenaphthene	ND	1.00	11							
luorene	ND	0.100	н							
Phenanthrene	ND	0.100	н							
Anthracene	ND	0.0500	N.							
luoranthene	ND	0.100	**							
yrene	ND	0.100	11							
Benzo (a) anthracene	ND	0.0500	'n							
Chrysene	ND	0.100	н							
Benzo (b) fluoranthene	ND	0.100	и							
Benzo (k) fluoranthene	ND	0.0500	U							
Benzo (a) pyrene	ND	0.0500	11							
Dibenzo(a,h)anthracene	ND	0.100	11							
Benzo (g,h,i) perylene	ND	0.100	н							
ndeno (1,2,3-cd) pyrene	ND	0.100	п							
Surrogate: Decafluorobiphenyl	5.32	•	-11	5.00		106	30-115			
LCS (B3J2247-BS1)				Prepared:	10/16/13	Analyzed	: 10/22/13			
Naphthalene	0.541	0.500	μg/L	0,500		108	60-130			
luorene	0.569	0.100	п	0.500		114	60-130			
yrene	0.485	0.100	н	0.500		97.0	60-130			
Benzo (a) pyrene	0.499	0.0500	n.	0.500		99.8	60-130			
ndeno (1,2,3-cd) pyrene	0.421	0.100	II.	0.500		84.2	60-130			
LCS (B3J2247-BS2)				Prepared:	10/16/13	Analyzed	: 10/22/13			
Naphthalene	0.598	0.500	µg/L	0.500		120	60-130			
Fluorene	0.602	0.100	- 11	0.500		120	60-130			
Pyrene	0.452	0.100	11	0.500		90.4	60-130			
Benzo (a) pyrene	0.489	0.0500	11	0.500		97.8	60-130			
ndeno (1,2,3-cd) pyrene	0.405	0.100	11	0.500		81.0	60-130			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

26052 MERIT CIRCLE SUITE 105, LAGUNA HILLS, CALIFORNIA 92653 TELEPHONE: (949) 348-9389 FAX: (949) 348-9115 E-MAIL: SIERRALABS @ SIERRALABS.NET

AMEC	Project: San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	11/14/13 10:54

Polynuclear Aromatic Compounds by EPA Method 8310 - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3J2247 - EPA 3510C Sep	Funnel	-								
LCS Dup (B3J2247-BSD1)				Prepared:	10/16/13	Analyzed	I: 10/22/13			
Naphthalene	0.557	0.500	μg/L	0.500		111	60-130	2.91	30	
Fluorene	0.519	0.100	н	0.500		104	60-130	9.19	30	
Pyrene	0.498	0.100	н	0.500		99.6	60-130	2.64	30	
Benzo (a) pyrene	0.503	0.0500	н	0.500		101	60-130	0.798	30	
Indeno (1,2,3-cd) pyrene	0.544	0.100	11	0.500		109	60-130	25,5	30	

Г

AMEC	r	Project:	San Diego Airport (2013)				
9177 Sky	Project Number: [none] Rep						
San Dieg	o CA, 92123	Project Manager:	Amanda Archenhold	11/14/13 10:54			
		Notes and De	finitions				
D-42	Sample non-detect (ND) for requ	ested fuel type. Other hydrocar	bons may be present.				
QM-07	The spike recovery was outside a recovery.	acceptance limits for the MS an	d/or MSD. The batch was accepted based	l on acceptable LCS			
S-07	Surrogate recovery outside of control limits due to coelution with high levels of petroleum hydrocarbons.						
DET	Analyte DETECTED						
ND	Analyte NOT DETECTED at or above the reporting limit						
NR	Not Reported						
dry	. Sample results reported on a dry weight	basis					
RPD	Relative Percent Difference						

8100 Secura Way • Santa Fe Springs, CA 90670 Telephone (562) 347-2500 • Fax (562) 907-3610

October 18, 2013

Nick Forsyth Sierra Analytical Labs, Inc. 26052 Merit Circle, Ste. 104 Laguna Hills, CA 92653

Re: PTS File No: 43667 Physical Properties Data 1310169

Dear Mr. Forsyth:

Please find enclosed report for Physical Properties analyses conducted upon the sample received from your 1310169 project. All analyses were performed by applicable ASTM, EPA, or API methodologies. An electronic version of the report has previously been sent to your attention via the internet. The sample is currently in storage and will be retained for thirty days past completion of testing at no charge. Please note that the sample will be disposed of at that time. You may contact me regarding storage, disposal, or return of the sample.

PTS Laboratories appreciates the opportunity to be of service. If you have any questions or require additional information, please contact Morgan Richards at (562) 347-2509.

Sincerely, PTS Laboratories, Inc.

Michael Mark Brady, P.G. District Manager

Encl.

PTS Laboratories

Project Name: Project Number:

N/A 1310169

TEST PROGRAM - 20131011

PTS File No: 43667 Client: Sierra Analytical Labs, Inc.

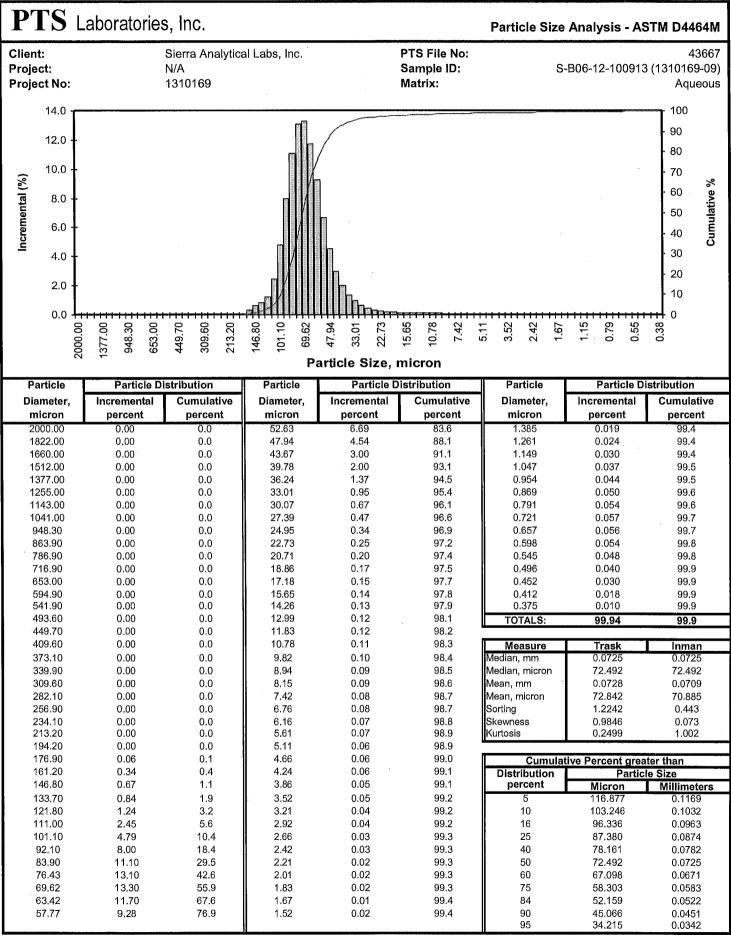
				Particle		
FLUID ID	Date	Time	Fluid	Size:		
			Type	Microsize		
Method:				ASTM D4464		
Date Received: 20131011						
S-B06-12-100913 (1310169-09) 20131009 1755	20131009	1755	Water	X		
TOTALS:				1		1
I aboratory Test Program Notes	s			Ē		

Standard TAT for basic analysis is 5 business days.

PTS Laboratories, Inc.

Sierra Analytical Labs, Inc. PTS File No: 43667

PARTICLE SIZE SUMMARY (METHODOLOGY: ASTM D4464M)


PROJECT NAME: PROJECT NO:

N/A 1310169

		Median Grain Size					Distributio	RCENT G	IULATIVE PERCENT GREATER THAN Distribution percent microns	HAN			
Sample ID	Matrix	micron (1)	5%	10%	16%	25%	40%	50%	60%	75%	84%	80%	95%
S-B06-12-100913 (1310169-09)	Aqueous	72.492	116.877	103,246	96.336	87.380	78.161	72.492	67.098	58.303	52.159	45.066	34.215

(1) Based on Trask Median

Page 1 of 2

Fax: (562) 907-3611 Page 2 of 2

SUBCONTRACT ORDER Sierra Analytical Labs, Inc. Sierra Proiect #: 1310169

SENDING LABORATORY:	ichen ander Marken ander ander	naam stiin ferder syn de sen verste fan de ferder in ste de de de se	NG SEGMAN DI CHART PRIMO DI NATIONA DI SEGMANDA DI CHART	Comments RECEIVING LABORATORY:
Sierra Analytical Labs, Inc. 26052 Merit Circle, Suite 104 Laguna Hills, CA 92653 Phone: (949) 348-9389 Fax: (949) 348-9115 Laboratory Contact: Nick Forsyth		Tum Around Mon Time Requested: 48H	Jour 🛄 72 Hour	PTS Laboratories 8100 Secura Way Santa Fe Springs, CA 90670 Phone : (562) 907-3607 Fax: (562) 907-3610
Analysis	Expires	Sampled:	Laboratory ID	Comments
Sample ID: S-B06-12-100913 (1310169-09)	Liquid	10/09/13 17:55		
Full Particle Sizing	04/07/14	17:55	<u>,,,,, ,</u>	
Containers Supplied: 1L Amber (C)				

÷ ,

1

Special Instructions :			le No.12 αι "ΠΜ(Ρ((α.)) - 5° Υ - 0,2° αντίναι: -1.Vα(Πζάτικγ
Relinquished By	<u>IU(11/13@13:70</u> Date/Time	Received By	<u>10/11/13</u> 13:30 Date/Time
Relinquished By	Date / Time	Received By	Date / Time
Relinquished By	Date / Time	Received By	Date / Time

Weck Laboratories, Inc.

Analytical Laboratory Service - Since 1964

Certificate of Analysis

 Report Date:
 10/25/13 10:32

 Received Date:
 10/11/13 13:57

 Turnaround Time:
 Normal

Phones: (949) 348-9389 Fax: (949) 348-9115

P.O. #:

Attn: Nick Forsyth

Project: 1310169

Client: Sierra Analytical Labs, Inc. 26052 Merit Circle, Suite 104 Laguna Hills, CA 92653

Dear Nick Forsyth :

Enclosed are the results of analyses for samples received 10/11/2013 with the Chain of Custody document. The samples were received in good condition, at 5.0 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Lab Sample ID: 3J11083-01 Sampled by: Client	Sample ID Sampled:		C-B08-8-10(/13 17:12	0913 (1310/	169-05)				Ма	trix: Water
Analyte	Result	MDL	MRL	Units	Dil	Method	Prepared	Analyzed	Batch	Qualifier
Ethylene glycol	ND		10	mg/l	1	EPA 8015B	10/18/13	10/18/13 18:30	W3J0985	
Propylene glycol	ND		20	mg/l	1	EPA 8015B	10/18/13	10/18/13 18:30	W3J0985	
Lab Sample ID: 3J11083-02	Sample ID);	S-B06-12-1	00913 (131)	0169-09		·····.		Ma	atrix: Water

Sampled by: Client	Sampled	: 10/09/	13 17:55	•		,				
Analyte	Result	MDL	MRL	Units	Dil	Method	Prepared	Analyzed	Batch	Qualifier
Ethylene glycol	ND		10	mg/l	1	EPA 8015B	10/18/13	10/18/13 15:41	W3J0985	
Propylene glycol	ND		20	mg/l	1	EPA 8015B	10/18/13	10/18/13 15:41	W3J0985	

Weck Laboratories, Inc.

Analytical Laboratory Service - Since 1964

Certificate of Analysis

Quality Control Section

Glycols by EPA Method 8015B - Quality Control

Batch W3J0985 - EPA 8015B

Blank (W3J0985-BLK1)					Prepared: 10/	'18/13 An	alyzed: 10/18	/13 13:19	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Ethylene glycol		ND		mg/l					
Propylene glycol		ND		mg/l					
LCS (W3J0985-BS1)					Prepared: 10/	/18/13 An	alyzed: 10/18	8/13 13:47	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Ethylene glycol		66.0		mg/l	100	66	46-129		
Matrix Spike (W3J0985-MS1)	So	urce; 3 31108 3	3-01		Prepared: 10/	18/13 An	alyzed: 10/18	8/13 14:16	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Ethylene glycol	ND	83.3		mg/l	100	83	57-127		
Matrix Spike Dup (W3J0985-MSD1)	So	urce: 3J1108	3-01		Prepared: 10/	/18/13 An	alyzed: 10/18	8/13 14:45	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Ethylene glycol	ND	76.2		mg/l	100	76	57-127	9	25

Page 2 of 3

Weck Laboratories, Inc.

Analytical Laboratory Service - Since 1964

Certificate of Analysis

Notes:

The Chain of Custody document is part of the analytical report.

Any remaining sample(s) for testing will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

An Absence of Total Coliform meets the drinking water standards as established by the State of California Department of Health Services. The Reporting Limit (RL) is referenced as laboratory's Practical Quantitation Limit (PQL). For Potable water analysis, the Reporting Limit (RL) is referenced as Detection Limit for reporting purposes (DLRs) defined by EPA.

If sample collected by Weck Laboratories, sampled in accordance to lab SOP MIS002

Authorized Signature Contact: Kim G Tu (Project Manager)

FLAP # 1132 LACSD # 10143

NELAC # 04229CA

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Weck Laboratories certifies that the test results meet all requirements of NELAC unless noted in the Case Narrative. This analytical report must be reproduced in its entirety.

Flags for Data Qualifiers:

ŇD	NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL).
Sub	Subcontracted analysis, original report enclosed.
DL	Method Detection Limit
RL	Method Reporting Limit
MDA	Minimum Detectable Activity
NR	Not Reportable

Page 3 of 3

Second Storm Event

14 November 2013

Amanda Archenhold AMEC 9177 Sky Park Court Suite A San Diego, CA 92123

RE:San Diego Airport Work Order No.: 1310383

Attached are the results of the analyses for samples received by the laboratory on 10/29/13 04:35.

The samples were received by Sierra Analytical Labs, Inc. with a chain of custody record attached or completed at the submittal of the samples.

The analyses were performed according to the prescribed method as outlined by EPA, Standard Methods, and A.S.T.M.

The remaining portions of the samples will be disposed of within 30 days from the date of this report. If you require any additional retaining time, please advise us.

Sincerely,

and R. Fosyth

Richard K. Forsyth

Laboratory Director

Sierra Analytical Labs, Inc. is certified by the California Department of Health Services (DOHS), Environmental Laboratory Accredidation Program (ELAP) No. 2320.

AMEC	Project: San Diego Airport	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	11/14/13 11:21

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
C-B08-8-102913	1310383-01	Liquid	10/29/13 02:47	10/29/13 04:35
C-B09-10B-102913	1310383-02	Liquid	10/29/13 03:06	10/29/13 04:35

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

26052 Merit Circle Suite 105, Laguna Hills, California 92653 Telephone: (949) 348-9389 Fax: (949) 348-9115 E-Mail: sierralabs @ sierralabs.net

Total Coliforms

Г

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123			oject: San mber: [non lager: Ama	e]	-			Reported 11/14/13 1	
Γ	Aicrobiological S	Parame Sierra An	•			Method	S		
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B08-8-102913 (1310383-01) Liquid	Sampled: 10/29/13	3 02:47 R	eceived: 1	0/29/13 04	4:35	•			
Enterococcus Fecal Coliforms	5 <1	1 C 1.0	FU/100 mL	1	B3J2944 "	10/29/13 "	10/29/13 05:30 "	SM 9230C SM 9222D	

C-B09-10B-102913 (1310383-02) Liquid Sampled: 10/29/13 03:06 Received: 10/29/13 04:35

6.0

Enterococcus	9000	100	CFU/100 mL	100	B3J2944	10/29/13	10/29/13 05:30	SM 9230C
Fecal Coliforms	50	1.0	17	1	н	n	н	SM 9222D
Total Coliforms	9000	100	18	100	n	11	н	SM 9222B

н

н

11

н

ņ

SM 9222B

1.0

. . . .

AMEC	Project: San Diego Airport	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	11/14/13 11:21

Notes and Definitions

_ND<1	<1
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

1		, Suite CA 92653 9389 15	Bottle Count	2	\sim
		<i>To:</i> Sierra Analytical 26052 Merit Circle, Suite 105 Laguna Hilis, CA 92653 Phone: (949) 348-9115 Fax: (949) 348-9115	Preservative	4°C + Tablet Preservative	4°C + Tablet Preservative
			Bottle Size	120 mL Plastic	120 mL Plastic
<u>Analysis Request and Chain of Custody</u>	SAN DIEGO AIRPORT		Time Analyses	Total Coliforms, Fecal Coliforms, Enterococcus $2.47~c_{\rm e}~{\cal M}$	3.06 $_{GM}$ Total Coliforms, Fecal Coliforms, Enterococcus
		structure x: (858) 278-5300	Date	10/29/2013	10/29/203
		<i>From:</i> AMEC Environment & Infrastructure Attn: Amanda Archenhold 9177 Sky Park Court San Diego, CA 92123 Phone: (858) 278-3600 Fax: (858) 278-5300	SampleID	@(c-B08-8 [024 [3	0) C-B09-10B 1024 13

Q 4,35am Date/Time: 10-29-13 Date/Time: 10 - 27 - 13 3 Received By Received By:__ Ŀ. m Page_ MW Date/Time: 10/29/ Date/Time: 10 23 Q Alczander Relinquished By Relinquished By:___ Sampler's Initials:

していて

Ì

1310363

14 November 2013

Amanda Archenhold AMEC 9177 Sky Park Court Suite A San Diego, CA 92123

RE:San Diego Airport (2013)

Work Order No.: 1310398

Attached are the results of the analyses for samples received by the laboratory on 10/29/13 13:50.

The samples were received by Sierra Analytical Labs, Inc. with a chain of custody record attached or completed at the submittal of the samples.

The analyses were performed according to the prescribed method as outlined by EPA, Standard Methods, and A.S.T.M.

The remaining portions of the samples will be disposed of within 30 days from the date of this report. If you require any additional retaining time, please advise us.

Sincerely,

- forth

Richard K. Forsyth

Laboratory Director

Sierra Analytical Labs, Inc. is certified by the California Department of Health Services (DOHS), Environmental Laboratory Accredidation Program (ELAP) No. 2320.

A SULLARA

Project: San Diego Airport (2013)	
Project Number: [none]	Reported:
Project Manager: Amanda Archenhold	11/14/13 10:56
	Project Number: [none]

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
C-B01-1A-102913	1310398-01	Liquid	10/29/13 03:30	10/29/13 13:50
C-B03-2-102913	1310398-02	Liquid	10/29/13 03:55	10/29/13 13:50
C-B05-4-102913	1310398-03	Liquid	10/29/13 03:45	10/29/13 13:50
C-B06-5A-102913	1310398-04	Liquid	10/29/13 04:30	10/29/13 13:50
С-В07-6-102913	1310398-05	Liquid	10/29/13 04:00	10/29/13 13:50
C-B07-7-102913	1310398-06	Liquid	10/29/13 02:55	10/29/13 13:50
C-B08-8-102913	1310398-07	Liquid	10/29/13 02:40	10/29/13 13:50
C-B09-10B-102913	1310398-08	Liquid	10/29/13 03:00	10/29/13 13:50
C-B12-9A-102913	1310398-09	Liquid	10/29/13 03:10	10/29/13 13:50
C-B06-5A-102913-BLK	1310398-10	Liquid	10/29/13 04:30	10/29/13 13:50
C-B08-8-102913-DUP	1310398-11	Liquid	10/29/13 02:40	10/29/13 13:50
S-B06-12-102913	1310398-12	Liquid	10/29/13 03:20	10/29/13 13:50
S-B06-12-102913	1310398-13	Liquid	10/29/13 08:57	10/29/13 13:50
S-B06-12-102913	1310398-14	Liquid	10/29/13 03:20	10/29/13 13:50

AMEC	Project: San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	11/14/13 10:56

Conventional Chemistry Parameters by APHA/EPA Methods

Sierra Analytical Labs, Inc.											
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
C-B01-1A-102913 (1310398-01) Liquid	Sampled: 10/29	9/13 03:30	Received:	10/29/13	13:50			•			
Ammonia as N	0.370	0.100	mg/L	1	B3K0428	10/29/13	10/29/13 15:15	SM 4500-NH3			
Biochemical Oxygen Demand	11.4	2.00	N	и	n	и	11/03/13 15:15	EPA 405.1			
Chemical Oxygen Demand	28.0	0.100	40.	U.	II .	u.	10/29/13 15:15	EPA 410.4			
Specific Conductance (EC)	97.0	0.100	µmhos/cm	11	10	9	н	EPA 120.1			
Total Hardness	26.6	0.400	mg/L	n	И	н	п	SM 2340 C			
Hexane Extractable Material (HEM)	ND	2.00	н	н	н	и	н	EPA 1664			
Methylene Blue Active Substances	ND	0.0500	0	U.	, 11	0	n	EPA 425.1			
pH	6.92	0.100	pH Units	11 ·	н	н	U.	EPA 150.1			
Total Suspended Solids	10.0	1.00	mg/L	н.	н	n	".	EPA 160.2			
C-B03-2-102913 (1310398-02) Liquid	Sampled: 10/29/	13 03:55	Received: 1	0/29/13 1	3:50						
Ammonia as N	8.10	0.100	mg/L	1	B3K0428	10/29/13	10/29/13 15:15	SM 4500-NH3			
Biochemical Oxygen Demand	88.0	2.00	N	н	н	-11	11/03/13 15:15	EPA 405.1			
Chemical Oxygen Demand	196	0.100	и	н	н	н	10/29/13 15:15	EPA 410.4			
Specific Conductance (EC)	443	0.100	µmhos/cm	11.	п	II.	11	EPA 120.1			
Total Hardness	165	0.400	mg/L	-11		11	н	SM 2340 C			
Hexane Extractable Material (HEM)	2.90	2.00	n	-11	. 11	n	11.	EPA 1664			
Methylene Blue Active Substances	0.340	0.0500	II.	n	11	11	н	EPA 425,1			
pH	6.40	0.100	pH Units	11	11	11	łı	EPA 150.1			
Total Suspended Solids	`86.0	1.00	mg/L	-11	. 11	11	и	EPA 160.2			
C-B05-4-102913 (1310398-03) Liquid	Sampled: 10/29/	13 03:45	Received: 1	0/29/13 1	3:50						
Ammonia as N	3.15	0.100	mg/L	1	B3K0428	10/29/13	10/29/13 15:15	SM 4500-NH3			
Biochemical Oxygen Demand	67.0	2.00	н	11	-11	0	11/03/13 15:15	EPA 405.1			
Chemical Oxygen Demand	168	0.100	н	n	11	11	10/29/13 15:15	EPA 410.4			
Specific Conductance (EC)	236	0.100	µmhos/cm	н	n	11	н	EPA 120.1			
Total Hardness	75.1	0.400	mg/L	8	н	н	н	SM 2340 C			
Hexane Extractable Material (HEM)	2.20	2,00	11	n	11	9	11-	EPA 1664			
Methylene Blue Active Substances	0.310	0,0500	л	97	н	11	11	EPA 425.1			
pH	6.70	0.100	pH Units	9	н	n	Л	EPA 150.1			
Total Suspended Solids	63.0	1.00	mg/L	9	н.	It	11	EPA 160.2			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

26052 MERIT CIRCLE SUITE 105, LAGUNA HILLS, CALIFORNIA 92653 TELEPHONE: (949) 348-9389 FAX: (949) 348-9115 E-MAIL: SIERRALABS @ SIERRALABS,NET

AMEC 9177 Sky Park Court Suite A		Project Ni	roject: San umber: [non	e]		13)		Reported:	
San Diego CA, 92123		Project Ma	nager: Ama	inda Arch	enhold			11/14/13 10	:56
Co	nventional Ch	emistry l	Paramete	rs by A	PHA/EP	A Meth	ods		
		Sierra A		-					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B06-5A-102913 (1310398-04) Liquid	Sampled: 10/2	9/13 04:30	Received:	10/29/13	13:50	4 n * ₁₀ 200			
Ammonia as N	0.850	0.100	mg/L	1	B3K0428	10/29/13	10/29/13 15:15	SM 4500-NH3	
Biochemical Oxygen Demand	195	2.00	11	n	11	11	11/03/13 15:15		
Chemical Oxygen Demand	456	0.100	н		11	U.	10/29/13 15:15		
Specific Conductance (EC)	183	0.100	µmhos/cm	n	0	U .	11	EPA 120.1	
Fotal Hardness	43.4	0.400	' mg/L	н	n		11	SM 2340 C	
Hexane Extractable Material (HEM)	ND	2.00	n	и	n		н	EPA 1664	
Methylene Blue Active Substances	0.280	0.0500	н	n	11	н	91	EPA 425.1	
H	7.12	0.100	pH Units	n	н	11		EPA 150.1	
Fotal Suspended Solids	189	1.00	mg/L	ñ	н	в	· 0	EPA 160.2	
C-B07-6-102913 (1310398-05) Liquid	Sampled: 10/29/	13 04:00 1	Received: 1	0/29/13 1	3:50				
Ammonia as N	4.40	0.100	mg/L	1	B3K0428	10/29/13	10/29/13 15:15	SM 4500-NH3	
Biochemical Oxygen Demand	67.0	2.00	"	"	n	н	11/03/13 15:15		
Chemical Oxygen Demand	289	0.100	-11	"	n	11	10/29/13 15:15		
Specific Conductance (EC)	260	0.100	µmhos/cm	11	п	н		EPA 120.1	
Fotal Hardness	68.0	0.400	mg/L	n	п	н	n	SM 2340 C	
Hexane Extractable Material (HEM)	2.00	2.00	11	11	н	u.	u	EPA 1664	
Methylene Blue Active Substances	0.270	0.0500	11	9	Ð	n.	u.	EPA 425.1	
ЪН	6.44	0.100	pH Units	n	n	11	н	EPA 150.1	
Fotal Suspended Solids	62.0	1.00	mg/L	11	u.	н	P	EPA 160.2	
C-B07-7-102913 (1310398-06) Liquid	Sampled: 10/29/	13 02:55 1	Received: 1	0/29/13 1	3:50				
Ammonia as N	4.45	0.100	mg/L	1	B3K0428	10/29/13	10/29/13 15:15	SM 4500-NH3	
Biochemical Oxygen Demand	71.8	2.00	11	9	H.	0	11/03/13 15:15	EPA 405.1	
Chemical Oxygen Demand	184	0.100	11	ñ	н	11	10/29/13 15:15	EPA 410.4	
Specific Conductance (EC)	166	0.100	µmhos/cm	"	н	0	11	EPA 120.1	
Fotal Hardness	52,0	0.400	mg/L	"	н		и	SM 2340 C	
Hexane Extractable Material (HEM)	3,30	2.00	"	n	u.	н	n.	EPA 1664	
Methylene Blue Active Substances	0.390	0.0500	"	н	u.	н	D	EPA 425.1	
ЪН	6.51	0.100	pH Units	н	n	n	н	EPA 150.1	
Fotal Suspended Solids	69.0	1.00	mg/L	Ħ	ri I	н	н	EPA 160.2	

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project N	roject: San umber: [nor mager: Ama	ne]	· ·	13)		Reported 11/14/13 1	
	ventional C					A Meth	ods		
		Sierra A		•					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
C-B08-8-102913 (1310398-07) Liquid	Sampled: 10/2	9/13 02:40	Received: 1	0/29/13 1	3:50				
Ammonia as N	0.250	0.100	mg/L	1	B3K0428	10/29/13	10/29/13 15:15	SM 4500-NH3	
Biochemical Oxygen Demand	10.4	2.00	11	n	11	11	I1/03/13 15:15	EPA 405.1	
Chemical Oxygen Demand	28.0	0.100	11	н	n	н	10/29/13 15:15	EPA 410.4	
Specific Conductance (EC)	164	0.100	µ1nhos/cm	11	H.	н	41	EPA 120.1	
Total Hardness	58.2	0.400	mg/L	P	11	н	н	SM 2340 C	
Hexane Extractable Material (HEM)	ND	2.00	11	н	п	.91	u	EPA 1664	
Methylene Blue Active Substances	ND	0.0500	W	н	н	п	u	EPA 425.1	
pH	7.05	0.100	pH Units	н	9	11	11	EPA 150.1	
Total Suspended Solids	7.00	1.00	mg/L	11	17	п	И	EPA 160,2	
C-B09-10B-102913 (1310398-08) Liquid	I Sampled: 1	0/29/13 03:00) Received	l: 10/29/1	3 13:50				
Ammonia as N	2.40	0.100	ıng/L	1	B3K0428	10/29/13	10/29/13 15:15	SM 4500-NH3	
Biochemical Oxygen Demand	53.0	2.00	н	0	II.	н	11/03/13 15:15	EPA 405.1	
Chemical Oxygen Demand	280	0.100		n	11	U	10/29/13 15:15	EPA 410.4	
Specific Conductance (EC)	305	0.100	µmhos/cm	н	11	II.	н	EPA 120.1	
Total Hardness	64.0	0.400	mg/L	п	н	11	n	SM 2340 C	
Hexane Extractable Material (HEM)	2.40	2.00	U.	0.1	11	II.	U ·	EPA 1664	
Mcthylcne Blue Active Substances	0.350	0.0500	11	9	11	- 11	н	EPA 425.1	
pH	6.98	0.100	pH Units	н	11	u.	11	EPA 150.1	
Total Suspended Solids	51.0	1.00	mg/L	п	n	u	н	EPA 160.2	
C-B12-9A-102913 (1310398-09) Liquid	Sampled: 10	/29/13 03:10	Received	: 10/29/13	13:50				
Ammonia as N	0.400	0.100	mg/L	1	B3K0428	10/29/13	10/29/13 15:15	SM 4500-NH3	
Biochemical Oxygen Demand	12.4	2.00	н	п	.11	н	11/03/13 15:15	EPA 405.1	
Chemical Oxygen Demand	77.0	0.100	n	н	11	II	10/29/13 15:15	EPA 410.4	
Specific Conductance (EC)	170	0.100	µmhos/cm	u	11	u	11	EPA 120.1	
Total Hardness	53.8	0.400	mg/L	11	n	IT	и	SM 2340 C	•
Hexane Extractable Material (HEM)	ND	2.00	"	n	n	u	u	EPA 1664	
Methylene Blue Active Substances	ND	0,0500	9		н	u.	n	EPA 425.1	
pH	7.18	0.100	pH Units		9	н	11	EPA 150.1	
Total Suspended Solids	10.0	1.00	mg/L		n	u.	н	EPA 160.2	

26052 MERIT CIRCLE SUITE 105, LAGUNA HILLS, CALIFORNIA 92653 TELEPHONE: (949) 348-9389 FAX: (949) 348-9115 E-MAIL: SIERRALABS @ SIERRALABS.NET

pН

Total Suspended Solids

AMEC		Р	roject: San	Diego A	Airport (20	13)			
9177 Sky Park Court Suite A			umber: [nor		1 \	,		Reported:	
San Diego CA, 92123		Project Ma	mager: Ama	anda Arcl	nenhold			11/14/13 10	:56
Conv	entional Cl	hemistry]	Paramete	rs by A	PHA/EP	A Meth	ods		
		Sierra A	nalytical	Labs, I	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B06-5A-102913-BLK (1310398-10) Liq	uid Sampled	d: 10/29/13 (04:30 Rec	eived: 10	/29/13 13:5	0			
Ammonia as N	ND	0.100	mg/L	1	B3K0428	10/29/13	10/29/13 15:1	5SM 4500-NH3	
Biochemical Oxygen Demand	ND	2.00	11	н	11	'n	11/03/13 15:1	5 EPA 405.1	
Chemical Oxygen Demand	ND	0.100	11	н	U.	11	10/29/13 15:1	5 EPA 410.4	
Specific Conductance (EC)	1.65	0.100	µmhos/cm	н	н		II	EPA 120.1	
Total Hardness	ND	0.400	mg/L	н	11	н	u.	SM 2340 C	
Hexane Extractable Material (HEM)	ND	2.00	11	н	"	11	"	EPA 1664	
Methylene Blue Active Substances	ND	0.0500	я	н	*	30	н	EPA 425.1	

н

11

....

....

EPA 150.1

EPA 160.2

C-B08-8-102913-DUP (1310398-11) Liquid Sampled: 10/29/13 02:40 Received: 10/29/13 13:50

7.82

ND

0.100

1.00

Ammonia as N	0.270	0.100	mg/L	1	B3K0428	10/29/13	10/29/13 15:15 \$	SM 4500-NH3
Biochemical Oxygen Demand	16.0	2.00	n	v	n	n	11/03/13 15:15	EPA 405.1
Chemical Oxygen Demand	30.0	0.100	n	9	н	.11	10/29/13 15:15	EPA 410.4
Specific Conductance (EC)	160	0.100	µmhos/cm	u.	н	11	. "	EPA 120.1
Total Hardness	57.0	0.400	ıng/L	н	n	n	н	SM 2340 C
Hexane Extractable Material (HEM)	ND	2.00	11		н	н		EPA 1664
Methylene Blue Active Substances	ND	0.0500		н	н	И	н	EPA 425.1
pH	7.08	0.100	pH Units	И	n	11	91	EPA 150.1
Total Suspended Solids	14.0	1.00	mg/L	п .	14	11	11	EPA 160.2

pH Units

mg/L

S-B06-12-102913 (1310398-13) Liquid Sampled: 10/29/13 08:57 Received: 10/29/13 13:50

Biochemical Oxygen Demand	13.4	2.00	mg/L	1	B3K0428	10/29/13	11/03/13 15:15	EPA 405.1
Chemical Oxygen Demand	25.0	0.100	11	U.	н	н	10/29/13 15:15	EPA 410.4
Specific Conductance (EC)	191	0.100	µmhos/cm	11	н	н	н	EPA 120.1
Total Hardness	50.0	0.400	mg/L	11	н	н	n	SM 2340 C
Hexane Extractable Material (HEM)	ND	2.00	н	11	н	11	н	EPA 1664
рН	7.18	0.100	pH Units	н	н	н	н	EPA 150.1
Total Suspended Solids	12.0	1.00	mg/L	н	"	"	11	EPA 160.2

	Metals by EPA 200 Series Methods	
San Diego CA, 92123	Project Manager: Amanda Archenhold	11/14/13 10:56
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
AMEC	Project: San Diego Airport (2013)	

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B01-1A-102913 (1310398-01) Liquid	Sampled: 10/2	29/13 03:30	Received	: 10/29/13	13:50		1		
Silver	ND	1.5	μg/L	1	B3J2949	10/29/13	10/31/13 12:29	EPA 200.8	
Aluminum	530	25	н	н	н	ц	н	п	
Arsenic	ND	3.0	11	н,	11	11	. II	н	
Cadmium	ND	2.0	н	0	н	н		11	
Chromium	ND	3.0	0	н	0	11	н	н	
Hexavalent Chromium	ND	0.0020	mg/L	н	B3J2939	10/29/13	11/04/13 11:13	EPA 218.6	
Copper	27	1.0	μg/L	0	B3J2949	10/29/13	10/31/13 12:29	EPA 200.8	
Iron	0.56	0.025	mg/L	н	U	и	II.	11	
Mercury	ND	0.00030	11.	п	B3J3042	10/30/13	10/30/13 19:54	EPA 245,1	
Nickel	ND	5.0	μg/L	11	B3J2949	10/29/13	10/31/13 12:29	EPA 200.8	
Lead	ND	1.0		н		-II	11	0	
Zinc	48	1.0	я	н	н	н	н	п	

C-B03-2-102913 (1310398-02) Liquid Sampled: 10/29/13 03:55 Received: 10/29/13 13:50

• • •	-								
Silver	ND	1.5	μg/L	1	B3J2949	10/29/13	10/31/13 12:29	EPA 200.8	
Aluminum	3100	25	н	я	-11	н	U.	n .	
Arsenic	ND	. 3.0	11	н	Ц	н	u	и	
Cadmium	ND	2.0	н	II	11	0	н	11	
Chromium	ND	3.0	u	11	n	н	II	н	
Hexavalent Chromium	ND	0.0020	mg/L	U	B3J2939	10/29/13	11/04/13 11:13	EPA 218.6	
Copper	960	1.0	μg/L	u	B3J2949	10/29/13	10/31/13 12:29	EPA 200.8	
Iron	0.30	0.025	mg/L	11	า	11	9	· 9-	~ -
Mercury	ND	0.00030	11	н	B3J3042	10/30/13	10/30/13 19:54	EPA 245,1	
Nickel	48	5.0	μg/L	Ш	B3J2949	10/29/13	10/31/13 12:29	EPA 200.8	
Lead	120	1.0		0	D	11	н		
Zinc	730	1.0	11	н	17	п	н	11	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

26052 MERIT CIRCLE SUITE 105, LAGUNA HILLS, CALIFORNIA 92653 TELEPHONE: (949) 348-9389 FAX: (949) 348-9115 E-MAIL: SIERRALABS @ SIERRALABS.NET

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123	Project: San Diego Airport (2013) Project Number: [none] Project Manager: Amanda Archenhold							Reported: 11/14/13 10:56				
	Me	etals by El	PA 200 S	eries M	ethods							
an she ta she was she		Sierra A	nalytical	Labs, I	nc.							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
C-B05-4-102913 (1310398-03) Liquid	Sampled: 10/29	/13 03:45 F	Received: 1	10/29/13 1:	3:50							
Silver	ND	1.5	μg/L	1	B3J2949	10/29/13	10/31/13 12:29					
Aluminum	2300	25		11	11	н	11	n				
Arsenic	ND	3.0		11	н	11	н	H				
Cadmium	ND	2.0	11	11	"	11	n	н.				
Chromium	ND	3.0	n,	11	н.	1F	н	H				
Hexavalent Chromium	ND	0.0020	mg/L	11	B3J2939	10/29/13	11/04/13 11:13					
Copper	710	1.0	μg/L	11	B3J2949	10/29/13	10/31/13 12:29	EPA 200.8				
Iron	2.1	0.025	mg/L	11	11	II.	II.	н				
Mercury	ND	0.00030	"	0	B3J3042	10/30/13	10/30/13 19:54					
Nickel	20	5.0	μg/L	II.	B3J2949	10/29/13	10/31/13 12:29	EPA 200.8				
Lead	ND	1.0	0.	"	"		n	n				
Zinc	990	1.0	н	D.	н	11	n	N				
C-B06-5A-102913 (1310398-04) Liquic	Sampled: 10/2	29/13 04:30	Received	: 10/29/13	13:50							
Silver	ND	1.5	μg/L	1	B3J2949	10/29/13	10/31/13 12:29	EPA 200.8				
Aluminum	1100	25	н	H.	н	n	11.	n				
Arsenic	ND	3.0	n	в	"	D.	H.	н				
Cadmium	ND	2.0	n	н	**	U.	н	H.				
Chromium	ND	3.0	н	H	11	11	11	II.				
Hexavalent Chromium	ND	0.0020	mg/L	п	B3J2939	10/29/13	11/04/13 11:13	EPA 218.6				
Copper	. 91	1.0	μg/L	11	B3J2949	10/29/13	10/31/13 12:29	EPA 200.8				
Iron	1.1	0.025	mg/L	11	H.	11	n	11				
Mercury	ND	0.00030	H.	D.	B3J3042	10/30/13	10/30/13 19:54	EPA 245.1				
Nickel	7.9	5.0	μg/L	U.	B3J2949	10/29/13	10/31/13 12:29	EPA 200.8				
Lead	12	1.0	11	11	н	11	н	11				
Zinc	300	1.0	11	11	11	н	н	н				

AMEC 9177 Sky Park Court Suite A	Project: San Diego Airport (2013) Project Number: [none]								Reported:	
San Diego CA, 92123	Project Manager: Amanda Archenhold							11/14/13 10:56		
	Me	tals by EP	A 200 S	series M	ethods					
		Sierra An	alytical	Labs, I	nc.					
	D14	Reporting	T I	Dilution	Batch	Duon ono d	A naturad	Method	Note	
Analyte	Result	Limit	Units			Prepared	Analyzed	Method	Note	
C-B07-6-102913 (1310398-05) Liquid	Sampled: 10/29/	13 04:00 R	eceived:	10/29/13 1	3:50					
Aluminum	970	25	μg/L	1	B3J2949	10/29/13	10/31/13 12:29	EPA 200.8		
Copper	370	1.0	11	н	U	и	u –			
Iron	3.2	0.025	mg/L	11	8	u	я	.0		
Lead	ND	1.0	μg/L	л	n		и	н		
Zinc	1200	1.0	11	п	91	IJ	н	n		
C-B07-7-102913 (1310398-06) Liquid	Sampled: 10/29	/13 02:55 R	eceived:	10/29/13 1	3:50					
Aluminum	2000	25	μg/L	1	B3J2949		10/31/13 12:29	EPA 200.8		
Copper	310	1.0	n	0.	н	л	u	н		
Iron	2.0	0.025	mg/L	11	0	у	н	11		
Lead	ND	1.0	μg/L	-11	11	II	11			
Zine	1000	1.0	11	н	п	и	u	n		
C-B08-8-102913 (1310398-07) Liquid	Sampled: 10/29	/13 02:40 R	eceived:	10/29/13 1	3:50					
Aluminum	42	25	μg/L	1	B3J2949		10/31/13 12:29	EPA 200.8		
Copper	64	1.0	н	и	U	9	п	II		
Iron	0.061	0.025	mg/L	11	ji	н	н	И		
Lead	ND	1.0	μg/L	11	н	н	0	н		
Zinc	150	1.0	И	н	н	н	11	W.		
C-B09-10B-102913 (1310398-08) Liqu	id Sampled: 10	/29/13 03:00	Receive	d: 10/29/1	3 13:50					
Aluminum	1400	25	μg/L	1	B3J2949	10/29/13	10/31/13 12:29	EPA 200.8		
Copper	68	1.0	н	н	11	u.	н	11		
Iron	1.7	0.025	mg/L	Л	11	н	11	11		
	ND	1.0	μg/L	N.	11	11	"	31		
Lead	11,02									

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123	Project: San Diego Airport (2013) Project Number: [none] Project Manager: Amanda Archenhold							Reported: 11/14/13 10:56			
	M	etals by EI	PA 200 §	Series M	ethods						
Sierra Analytical Labs, Inc.											
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
C-B12-9A-102913 (1310398-09) Liquid	Sampled: 10/	29/13 03:10	Received	: 10/29/13	13:50						
Aluminum	78	25	μg/L	1	B3J2949	10/29/13	10/31/13 12:29	EPA 200.8			
Copper	30	1.0	"	н	н	n	н	н			
Iron	0.10	0.025	mg/L	tt.	11	98	· II	n .			
Lead	ND	1.0	μg/L "	11 11	11	н.	II 	н .			
Zinc	120	1.0	u.	17	11	11	U	н			
C-B06-5A-102913-BLK (1310398-10) Li	quid Sample	d: 10/29/13 0	4:30 Re	ceived: 10/	29/13 13:5	60					
Silver	ND	1.5	μg/L	1	B3J2949	10/29/13	10/31/13 12:29	EPA 200.8			
Aluminum	ND	25	10-	н	н	н	1P	н			
Arsenic	ND	3.0	14	n	11	"	11-	н			
Cadmium	ND	2.0	н	н	н.	"	U.	н			
Chromium	ND	3.0	н	н	11	11	11	"			
Hexavalent Chromium	ND	0.0020	mg/L	н	B3J2939	10/29/13	11/04/13 11:13	EPA 218.6			
Copper	ND	1.0	μg/L	н	B3J2949	10/29/13	10/31/13 12:29	EPA 200.8			
Iron	ND	0.025	mg/L	11	11	11 .	**	u			
Mercury	ND	0.00030	н	11	B3J3042	10/30/13	10/30/13 19:54	EPA 245.1			
Nickel	ND	5.0	μg/L	U.	B3J2949	10/29/13	10/31/13 12:29				
Lead	ND	1.0	н	"	и	11	н	91			
Zinc	ND	1.0	"	11	н	U	U.	11			
C-B08-8-102913-DUP (1310398-11) Liqu	uid Sampled	: 10/29/13 02:	40 Rece	ived: 10/29	9/13 13:50						
Aluminum	36	25	μg/L	1	B3J2949	10/29/13	10/31/13 12:29	EPA 200.8			
Copper	5 7	1.0	"	II.	11		н	н			
Iron	0.054	0.025	mg/L	11	11	11	n	н			
Lead	ND	1.0	μg/L	u.	11	U.	11	n			
Zinc	130	1.0	"		11	11	I	и			

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123	M	Project Nu	umber: [no nager: An	nanda Arch	enhold)13)		Reported 11/14/13 10	
		Sierra A	nalytica	l Labs, I	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S-B06-12-102913 (1310398-13) Liquid	Sampled: 10/2	9/13 08:57	Received:	10/29/13 1	13:50		-		
Silver	ND	1.5	μg/L	1	B3J2949	10/29/13	10/31/13 12:29	EPA 200.8	
Aluminum	110	25	n	ti	11	11	11	. "	
Arsenic	ND	3.0	11	н	11	11	11	41	
Cadmium	ND	2.0	n i	л	11	11	μ	.И	
Chromium	ND	3.0	0		н	н	н	II.	
Hexavalent Chromium	ND	0,0020	mg/L	и	B3J2939	10/29/13	11/04/13 11:13	EPA 218.6	
Copper	54	1.0	μg/L	м	B3J2949	10/29/13	10/31/13 12:29	EPA 200.8	
Iron	0.44	0.025	mg/L	11	в	м	9	н	
Mercury	ND	0.00030	U.	11	B3J3042	10/30/13	10/30/13 19:54	EPA 245.1	
Nickel	ND	5.0	μg/L	м	B3J2949	10/29/13	10/31/13 12:29	EPA 200.8	
Lead	5.1	1.0	ч	н	п	н	n	H.	
Zinc	240	1.0	9	n	U.	U.	н.	"	

26052 MERIT CIRCLE SUITE 105, LAGUNA HILLS, CALIFORNIA 92653 TELEPHONE: (949) 348-9389 FAX: (949) 348-9115 E-MAIL: SIERRALABS @ SIERRALABS.NET

AMEC 9177 Sky Park Court Suite A		Project N	umber: [no		- 、	13)		Reporte	
San Diego CA, 92123				nanda Arch				11/14/13	0:56
	Metals (J	Dissolved)	v			lods			
		Sierra A	nalytica	l Labs, Iı	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B01-1A-102913 (1310398-01) Liquid	Sampled: 10/2	29/13 03:30	Received	l: 10/29/13	13:50				
Silver	ND	1.5	μg/L	· 1	B3J3045	10/30/13	10/31/13 15:20	EPA 200.8	
Arsenic	ND	3.0	и	11	n	n	в	8	
Cadmium	ND	2.0	н	17	n	н	н	91	
Chromium	ND	3.0	н	18	U	н.	н	0	
Hexavalent Chromium	ND	0.0020	mg/L	0	B3J2940	10/29/13	11/04/13 11:14	EPA 218.6	
Copper	13	1.0	μg/L	11	B3J3045	10/30/13	10/31/13 15:20	EPA 200.8	
Mercury	ND	0.00073	mg/L	н	B3J3043	10/30/13	10/30/13 19:56	EPA 245.1	
Nickel	ND	5.0	μg/L	н	B3J3045	10/30/13	10/31/13 15:20		
Lead	ND	2.0	11	n	11	18.	11	н	
Zinc	.32	1.0	"	"	n	n	u.	Û	
C-B03-2-102913 (1310398-02) Liquid	Sampled: 10/29	/13 03:55 1	Received:	10/29/13 1	3:50				
Silver	ND	1.5	μg/L	1	B3J3045	10/30/13	10/31/13 15:20	EPA 200.8	
Arsenic	ND	3.0	н	11	н	11	tł.	11	
Cadmium	ND	2.0	H	n	n	н	11	н	
Chromium	ND	3.0	n	U.	н	н	17	tt	
Hexavalent Chromium	ND	0.0020	mg/L	H.	B3J2940	10/29/13	11/04/13 11:14	EPA 218.6	
Copper	790	1.0	μg/L	н	B3J3045	10/30/13	10/31/13 15:20	EPA 200.8	
Mercury	ND	0.00073	mg/L	н	B3J3043	10/30/13	10/30/13 19:56	EPA 245.1	
Nickel	39	5.0	μg/L	н	B3J3045		10/31/13 15:20	EPA 200.8	
Lead	62	2.0	17	н	н	н	"		
Zinc	590	1.0	11	н	0	11.	0	11	
C-B05-4-102913 (1310398-03) Liquid	Sampled: 10/29	/13 03:45	Received:	10/29/13 1	3:50				
Silver	ND	1.5	μg/L	1	B3J3045	10/30/13	10/31/13 15:20	EPA 200.8	
Arsenic	ND	3.0	11	н	н	n	11	11	
Cadmium	ND	2.0	11-	M-	н	н	11	11	
Chromium	ND	3.0	17	н	н	и	"	n	
Hexavalent Chromium	ND	0.0020	mg/L	И	B3J2940	10/29/13	11/04/13 11:14	EPA 218.6	
Copper	530	1.0	μg/L	м	B3J3045	10/30/13	10/31/13 15:20		
Mercury	ND	0.00073	mg/L	м	B3J3043	10/30/13	10/30/13 19:56		
Nickel	16	5.0	μg/L	н	B3J3045		10/31/13 15:20		
Lead	ND	2.0	"	N	n	10/00/12	10/01/10/10/10	11	
	780	1.0		н	41	н	н	11	

Â.
S
SILP RA

AMEC 9177 Sky Park Court Suite A	Project: San Diego Airport (2013) Project Number: [none]							Reporte	
San Diego CA, 92123	Project Manager: Amanda Archenhold								10:56
	Metals (I	Dissolved)) by EPA	A 200 Ser	ries Meth	ods			
		Sierra A	nalytica	l Labs, I	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B06-5A-102913 (1310398-04) Liquic	Sampled: 10/2	29/13 04:30	Received	I: 10/29/13	13:50				
Silver	ND	1.5	μg/L	1	B3J3045	10/30/13	10/31/13 15:20	EPA 200.8	
Arsenic	ND	3.0	-11		н	н		н	
Cadmium	ND	2.0	11	11	н	11	н	n	
Chromium	ND	3.0	н	11	ч	11-	n	u.	
Hexavalent Chromium	ND	0.0020	mg/L	н	B3J2940	10/29/13	11/04/13 11:14	EPA 218.6	
Copper	71	1.0	μg/L	H.	B3J3045	10/30/13	10/31/13 15:20	EPA 200.8	
Mercury	ND	0.00073	mg/L		B3J3043	10/30/13	10/30/13 19:56	EPA 245.1	
Nickel	6.7	5.0	μg/L	11	B3J3045	10/30/13	10/31/13 15:20	EPA 200.8	
Lead	ND	2.0	11	ħ	н.	11	н	11	
Zine	210	1.0	н	н	н	п.	U	IJ	
C-B07-6-102913 (1310398-05) Liquid	Sampled: 10/29	/13 04:00	Received:	10/29/13 1	3:50				
Copper	200	1.0	μg/L	1	B3J3045	10/30/13	10/31/13 15:20	EPA 200.8	
Zinc	940	1.0	н	н	Ш	11	н	II.	
C-B07-7-102913 (1310398-06) Liquid	Sampled: 10/29	/13 02:55	Received:	10/29/13 1	3:50				
Copper	220	1.0	μg/Ľ	1	B3J3045	10/30/13	10/31/13 15:20	EPA 200.8	
Zinc	780	1.0	10	п	n,	u.		н	
C-B08-8-102913 (1310398-07) Liquid	Sampled: 10/29	/13 02:40	Received:	10/29/13 1	3:50				
Copper	53	1.0	μg/L	1	B3J3045	10/30/13	10/31/13 15:20	EPA 200.8	
Zinc	94	1.0	1	11		n	ч	11	
C-B09-10B-102913 (1310398-08) Liqu	id Sampled: 10	/29/13 03:00	0 Receive	ed: 10/29/1	3 13:50				
Copper	50	1.0	μg/L	1	B3J3045	10/30/13	10/31/13 15:20	EPA 200.8	<u> </u>
Zinc	360	1.0	10	ji	11	11	н	H.	

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	mber: [no	n Diego A me] nanda Arch	Airport (20 Menhold	13)		Reporte 11/14/13 1	
	Metals (Dissolved)	by EPA	200 Ser	ies Meth	ods			
		Sierra Ai	nalytical	l Labs, I	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B12-9A-102913 (1310398-09) Liquid	Sampled: 10/	29/13 03:10	Received	: 10/29/13	13:50				
Copper Zinc	21 100	1.0 1.0	μg/L "	1 "	B3J3045 "	10/30/13	10/31/13 15:20	EPA 200.8	
 С-В08-8-102913-DUP (1310398-11) Liqi			40 Rece	ived: 10/29	9/13 13:50				
Copper	52	1.0	μg/L	1	B3J3045	10/30/13	10/31/13 15:20	EPA 200.8	
Zinc	100	1.0	u	11-	n	U	М	11	
5-B06-12-102913 (1310398-13) Liquid	Sampled: 10/2	9/13 08:57	Received:	10/29/13 1	13:50				
Silver	ND	1.5	μg/L	1	B3J3045	10/30/13	10/31/13 15:20	EPA 200,8	
Arsenic	ND	3.0	11	1ł	"	н	ir	n	
Cadmium	ND	2.0	"	9	u.	н	II.	11	
Chromium	ND	3.0	11	91-	Û.	н	11	11	
Hexavalent Chromium	ND	0.0020	mg/L	W	B3J2940	10/29/13	11/04/13 11:14	EPA 218.6	
Copper	39	1.0	μg/L	11	B3J3045	10/30/13	10/31/13 15:20	EPA 200.8	
Mercury	ND	0.00073	mg/L	11.	B3J3043	10/30/13	10/30/13 19:56	EPA 245.1	
Nickel	ND	5.0	μg/L	11	B3J3045	10/30/13	10/31/13 15:20		
Lead	ND	2.0	17	н.	"	и	n	н	
Zinc	200	1.0		11.	11	11	н	н	

9177 Sky Park Court Suite A San Diego CA, 92123	·		mber: [no nager: An	nej nanda Arch	enhold			Reported 11/14/13 1	
<u></u>	Triv	alent Chi	romium	by Calc	ulation				
		Sierra Aı	nalytica	l Labs, Iı	nc.	•			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
C-B01-1A-102913 (1310398-01) Liqu	iid Sampled: 10/2	9/13 03:30	Received	l: 10/29/13	13:50				
Trivalent Chromium	ND	0.010	mg/L	1	B3J2935	10/29/13	11/04/13 11:17	Calculation	
C-B03-2-102913 (1310398-02) Liqui	d Sampled: 10/29/	13 03:55 R	Received:	10/29/13 1	3:50				
Trivalent Chromium	ND	0.010	mg/L	1	B3J2935	10/29/13	11/04/13 11:17	Calculation	
C-B05-4-102913 (1310398-03) Liqui	d Sampled: 10/29/	13 03:45 F	Received:	10/29/13 1	3:50				
Trivalent Chromium	ND	0.010	mg/L	1	B3J2935	10/29/13	11/04/13 11:17	Calculation	
C-B06-5A-102913 (1310398-04) Liqu	uid Sampled: 10/2	9/13 04:30	Received	I: 10/29/13	13:50				
Trivalent Chromium	ND	0.010	mg/L	1	B3J2935	10/29/13	11/04/13 11:17	Calculation	
C-B06-5A-102913-BLK (1310398-10)) Liquid Sampled	l: 10/29/13 0)4:30 Re	ceived: 10/	/29/13 13:5	50			
Trivalent Chromium	ND	0.010	mg/L	1	B3J2935	10/29/13	11/04/13 11:17	Calculation	
S-B06-12-102913 (1310398-13) Liqu	id Sampled: 10/29	/13 08:57	Received	: 10/29/13 1	13:50				
Trivalent Chromium	ND	0.010	mg/L		B3J2935	10/29/13	11/04/13 11:17		

AMEC 9177 Sky Park Court Suite A		P Project Ni		n Diego A one]	Airport (20	13)		Reported	:	
San Diego CA, 92123		Project Ma	nager: Ai	nanda Arch	enhold		11/14/13 10:56			
	Trivalent	Chromiu	m by C	alculatio	n (Dissol	ved)				
		Sierra A	nalytica	l Labs, I	nc.					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
C-B01-1A-102913 (1310398-01) Liquic	I Sampled: 10/29	9/13 03:30	Receive	d: 10/29/13	13:50					
Trivalent Chromium	ND	0.010	mg/L	1	B3J2937	10/29/13	11/04/13 11:11	7 Calculation		
C-B03-2-102913 (1310398-02) Liquid	Sampled: 10/29/	13 03:55 I	Received:	10/29/13 1	3:50					
Trivalent Chromium	ND	0.010	mg/L	1	B3J2937	10/29/13	11/04/13 11:17	7 Calculation		
C-B05-4-102913 (1310398-03) Liquid	Sampled: 10/29/	13 03:45 I	Received:	10/29/13 1	3:50					
Trivalent Chromium	ND	0.010	ıng/L	1	B3J2937	10/29/13	11/04/13 11:17	7 Calculation		
C-B06-5A-102913 (1310398-04) Liquid	I Sampled: 10/29	9/13 04:30	Receive	d: 10/29/13	13:50					
Trivalent Chromium	ND	0.010	mg/L	1	B3J2937	10/29/13	11/04/13 11:17	7 Calculation		
S-B06-12-102913 (1310398-13) Liquid	Sampled: 10/29	/13 08:57	Received	: 10/29/13	13:50					
Trivalent Chromium	ND	0.010	mg/L	1	B3J2937	10/29/13	11/04/13 11:11	7 Calculation		

	Deciante		
AMEC	Project,	San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number:	[none]	Reported:
San Diego CA, 92123	Project Manager:	Amanda Archenhold	11/14/13 10:56
	ganochloring Posticidos ar	nd PCBs by FPA Method 608	

Organochlorine Pesticides and PCBs by EPA Method 608

Sierra Analytical Labs, Inc.										
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
C-B01-1A-102913 (1310398-01) Liquid	Sampled: 10/2	29/13 03:30	Received	I: 10/29/13	13:50		. ·			
Aldrin	ND	0.075	μg/L	1	B3J3128	11/04/13	11/05/13 10:00	EPA 608		
HCH-alpha	ND	0.010	н	н	9	м	11	н		
HCH-beta	ND	0.050	н	U.	11	11	n	U.		
HCH-delta	ND	0.10	н	W.	п	и 1	н	u.		
HCH-gamma (Lindane)	ND	0.20	"	11	н	11	и	11		
Chlordane	ND	0.050	11	IJ	н	и	н	н		
4,4′-DDD	ND	0.010	и	÷н,	9	н	u.	н		
4,4′-DDE	ND	0.010	н	u.	9	H	11	. "		
4,4′-DDT	ND	0.010	u	11	11	н	н	n		
Dieldrin	ND	0.020	11	11		11	н	0		
Endosulfan I	ND	0.020	н	'n	н	11	н	11		
Endosulfan II	ND	0.050	н	н	u.	п	n	ŋ		
Endosulfan sulfate	ND	0.050	н	н	11	п	0	н		
Endrin	ND	0.10	11	9	11	n	11	II		
Endrin aldehyde	ND	0.050	11	0	н	11	н	9		
Heptachlor	ND	0.010	· - 0	н	n	н	н	· 11		
Heptachlor epoxide	ND	0.010	".	н	u.	n	U	ц		
Toxaphene	ND	1.0	н	н .	9	н		n		
PCB-1016	ND	0.50	11-		н	-0	л	н		
PCB-1221	ND	0.50	11	9	н	11	н	11		
PCB-1232	ND	0.50	N	н	n	11	н	H.		
PCB-1242	ND	0.50	н	н		н	н	"		
PCB-1248	ND	0.50	n	л	9	M	н	'n		
PCB-1254	ND	0.50	u.	u.	11	т	11	IJ		
PCB-1260	ND	0.50	0	11	9	'n	U.	11		
Surrogate: Decachlorobiphenyl		76.0 %	42	-147	"	"	n	"		
Surrogate: Tetrachloro-meta-xylene		85.2 %		-147	"	н	п	11		

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nur Project Man	nber: [no	ne]	virport (20 Menhold	13)		Reported 11/14/13 1	
	Organochlorir			•		ethod 60	8		
		Sierra An	alytica	I Labs, I	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
C-B03-2-102913 (1310398-02) Liquid	Sampled: 10/29	/13 03:55 R	eceived:	10/ 2 9/13 1	3:50				
Aldrin	ND	0.075	μg/L	1	B3J3128	11/04/13	11/05/13 10:00	EPA 608	
HCH-alpha	ND	0.010	н	n	11	11	n	u	
HCH-beta	ND	0.050	н	н	11	"	п	n	
HCH-delta	ND	0.10	11	н	11	"	11	u.	
HCH-gamma (Lindane)	ND	0.20	11	n	11	н.	9	11	
Chlordane	ND	0.050	n.	н	IF.	n	11	D	
I,4′-DDD	ND	0.010	и	11	n		11	0	
1,4′-DDE	ND	0.010	14	11	н	"	11	n.	
1,4′-DDT	ND	0.010	н	n	н	9	11	н	
Dieldrin	ND	0.020	11	17	н	"	II.	в	
Endosulfan I	ND	0.020	u	16.	н	н	11	11	
Endosulfan II	ND	0.050	н	н.	н	"	1r	n	
Endosulfan sulfate	ND	0.050	n	н	н	° 11		н	
Endrin	ND	0.10	. 11	н	91	н	11	n	
Endrin aldehyde	ND	0.050	0	н	0	п	n		
Heptachlor	ND	0.010		n	11	н	"		
Heptachlor epoxide	ND	0.010	11	n	11	n	н	ч	
Foxaphene	• ND	1.0	0	н	11	11	н	u.	
PCB-1016	ND	0.50	11	н	II	H.	н	11	
PCB-1221	ND	0.50	11	n,	11	н	· H	u	
PCB-1232	ND	0.50	н.	н	II.	n	н	u.	
PCB-1242	ND	0.50	-11	11	II.	n	н	u .	
PCB-1248	ND	0.50	U	11	11	"	н	u:	
PCB-1254	ND	0.50	н	11	u.	"	н	ч	
PCB-1260	ND	0.50	н	11	П.	n	н	u.	
Surrogate: Decachlorobiphenyl		70.8 %	42-	147	11.	"	11	"	
Surrogate: Tetrachloro-meta-xylene		80.4 %	42-	147	"	"	n.	н	

AMEC	Project: San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	11/14/13 10:56
(Drganochlorine Pesticides and PCBs by EPA Method	1 608

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B05-4-102913 (1310398-03) Liquid					3:50				
Aldrin	ND	0.075	μg/L	1	B3J3128	11/04/13	11/05/13 10:00	EPA 608	
HCH-alpha	ND	0.010	"	н	11	н	п	U.	
HCH-beta	ND	0,050	н	H.	n	n	-91	11	
HCH-delta	ND	0.10	IT	U	н		IJ	U	
HCH-gamma (Lindane)	ND	0.20	11	n	н	п	н	н	
Chlordane	ND	0.050	11	N-	11	н	11	н	
4,4′-DDD	ND	0.010	N-	н	ti	"	9	ŧr	
4,4′-DDE	ND	0,010	и	II.	н	U.	11	10 · ·	
4,4′-DDT	ND	0.010	n,	9	н	11	н	н	
Dieldrin	ND	0.020	11.	n	л.	11	н	н	
Endosulfan I	ND	0.020	н	н	11	н	0	н	
Endosulfan II	ND	0.050	IT	u.	0	п	0	u.	
Endosulfan sulfate	ND	0.050	R	11	. 11	U.	н	n .	
Endrin	ND	0.10	11	' n	U.	п	н	U.	
Endrin aldehyde	ND	0.050	н	н	11	н		н	
Heptachlor	ND	0.010	II.	II.	11	н	U	н	
Heptachlor epoxide	ND	0.010	91	9	п	n	11	11	
Toxaphene	ND	1.0	11	-0	н	.0	н	n	
PCB-1016	ND	0.50	н	в		11	н	п	
PCB-1221	ND	0.50	н	н		в .	R	н	
PCB-1232	ND	0.50		U.	10	н	v	97.	
PCB-1242	ND	0.50	9	0	n	n	11	91	
PCB-1248	ND	0.50	н	п	н	11	11	11	
PCB-1254	ND	0.50	н	н	u	11	н	.0	•
PCB-1260	ND	0.50	n	н	u	N	"	н	
Surrogate: Decachlorobiphenyl		50.0 %	42-	.147	п	11	Ш	n	
Surrogate: Tetrachloro-meta-xylene		86.8 %	42-	-147	"	"	"	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

26052 MERIT CIRCLE SUITE 105, LAGUNA HILLS, CALIFORNIA 92653 TELEPHONE: (949) 348-9389 FAX: (949) 348-9115 E-MAIL: SIERRALABS @ SIERRALABS.NET

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	mber: [no	n Diego A ne] anda Arch	airport (20 enhold	13)		Керо 11/14/1	
0	rganochlorin	e Pesticid	les and 1	PCBs by	EPA M	ethod 60	8		
Sierra Analytical Labs, Inc.									
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B06-5A-102913 (1310398-04) Liquid	Sampled: 10/2	9/13 04:30	Received	: 10/29/13	13:50				· · · · · · · · · · · · · · · · · · ·
Aldrin	ND	0.075	μg/L	1	B3J3128	11/04/13	11/05/13 10:00	EPA 608	
HCH-alpha	ND	0.010	n.	н:	0-	н	9	II.	
HCH-beta	ND	0.050	11	n	11.	н	11	H.	
HCH-delta	ND	0.10	11	n	н,	*	н	11	
HCH-gamma (Lindane)	ND	0.20	0	н	11	11	н	U	
Chlordane	ND	0.050	0	н	н.		0	11	
4,4′-DDD	ND	0.010	н	u.	н	18	ħ	н	
4,4´-DDE	ND	0.010	п	н.	н	11	н	н	
4,4′-DDT	ND	0.010	н	11	н	11	н	н	
Dieldrin	ND	0.020	н	18	н	и	н	"	
Endosulfan I	ND	0.020	н.	11	н	n	н	н	
Endosulfan II	ND	0.050	u.	11	н	н	н	н	
Endosulfan sulfate	ND	0.050	**	10	0.	н	н	п	
Endrin	ND	0.10	11	19	11	н	н	"	
Endrin aldehyde	ND	0.050	11	ħ	11	п	н	+1	
Heptachlor	ND	0.010	11	н	11-	n	n		
Heptachlor epoxide	ND	0.010	н	н	11	н	н	"	
Toxaphene	ND	1.0	н	н	11	n	н	#1	
PCB-1016	ND	0.50	н	n	11	н	и	11	
PCB-1221	ND	0.50	n	n.	11	n	n	11	
PCB-1232	ND	0,50	н	n	11	н	н	0	
PCB-1242	ND	0.50	н	н	11.	н	н	n	
PCB-1248	ND	0.50	н	н	11	и	н	0.	
PCB-1254	ND	0.50	н	n	11	м	н	H:	
PCB-1260	ND	0.50	н	н	11	и	н	н	1
Surrogate: Decachlorobiphenyl		70.0 %	42-	147	"	"	"	11	
Surrogate: Tetrachloro-meta-xylene		90.8 %	42-		n	.11	"	11-	

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Pro Project Nur Project Man	nber: [no	ne]	irport (20	13)		Reported 11/14/13 1	
				·····		4h a J 600	0	11/14/13 1	0.50
	Organochlorin	e Pesucia Sierra An		•			D		
		Reporting	•	,	-				
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B07-6-102913 (1310398-05) Liquid	Sampled: 10/29/	13 04:00 R	eceived:	10/29/13 1	3:50				
PCB-1016	ND	0.50	μg/L	1	B3J3128	11/04/13	11/05/13 10:00	EPA 608	
PCB-1221	ND	0.50	11	11	n	н	U.	н	
PCB-1232	ND	0.50	н	9	11	н	-11	н	
PCB-1242	ND	0.50	м	9	11	u	11	11	
PCB-1248	ND	0,50	11	n	п	-11	n	11	
PCB-1254	ND	0.50		н	н	11	н	н	
PCB-1260	ND	0.50	.11	н	и	н	"	. н	
Surrogate: Decachlorobiphenyl		64.4 %	42-	147	"	"	n	n	
Surrogate: Tetrachloro-meta-xylene		74.0 %	42-	147	-u	"	n	n	
C-B07-7-102913 (1310398-06) Liquid	Sampled: 10/29/	13 02:55 R	eceived:	10/29/13 1	3:50				
PCB-1016	ND	0.50	μg/L	1	B3J3128	11/04/13	11/05/13 10:00	EPA 608	
PCB-1221	ND	0.50	м	-11	11	н	11	н	
PCB-1232	ND	0.50	11	n	-11	11	n	**	
PCB-1242	ND	0.50	н	n	n	11	н	11	
PCB-1248	ND	0.50	.11	11	. 0	н	IT	н	
PCB-1254	ND	0.50	л	"	u	н	11	н	
PCB-1260	ND	0.50	н	И	11	п	11	н	
Surrogate: Decachlorobiphenyl		79.6 %	42-	147	II	11	11	н	
Surrogate: Tetrachloro-meta-xylene		61.2 %	42-	147	"	"	"	"	
C-B08-8-102913 (1310398-07) Liquid	Sampled: 10/29/	/13 02:40 R	eceived:	10/29/13 1	3;50				
PCB-1016	ND	0.50	μg/L	1	B3J3128	11/04/13	11/05/13 10:00	EPA 608	
PCB-1221	ND	0.50	1	11	n	u.	п,	U	
	ND	0.50	н	и	н	11	н	II.	
PCB-1232	· · ·		н	н.	н	11	н	11	
	ND	0.50							
PCB-1242	ND ND	0.50	Ħ	n	п	.0	И	17	
PCB-1242 PCB-1248		0.50	n	n n	и	9 11.	н	9 -9	
PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260	ND								

Surrogate: Tetrachloro-meta-xylene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

66.8 %

26052 Merit Circle Suite 105, Laguna Hills, California 92653 Telephone: (949) 348-9389 Fax: (949) 348-9115 E-Mail: sierralabs @ sierralabs.net

42-147

n

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	mber: [no	n Diego A me] nanda Arch		13)		Reported 11/14/13 1	
Or	ganochlorin					ethod 60	8		
		Sierra Ar	nalytica	l Labs, Iı	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
C-B09-10B-102913 (1310398-08) Liquid	Sampled: 10/	29/13 03:00	Receive	d: 10/29/13	3 13:50				
PCB-1016	ND	0.50	μg/L	1	B3J3128	11/04/13	11/05/13 10:00	EPA 608	
PCB-1221	ND	0.50		"	н	11	**	н	
PCB-1232	ND	0.50	0	н	11	11	11	н	
PCB-1242	ND	0.50	11	н	и	11	"	н	
PCB-1248	ND	0.50	11	н	н	11	11	н	
PCB-1254	ND	0.50	u.	11	н	11	11	н	
PCB-1260	ND	0.50	n		п	н	11	н	
Surrogate: Decachlorobiphenyl		77.6%		147	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		44.4 %	42-	147	n	"	"	"	
C-B12-9A-102913 (1310398-09) Liquid	Sampled: 10/2	9/13 03:10	Received	: 10/29/13	13:50		· · · · · · · · · · · · · · · · · · ·		
PCB-1016	ND	0.50	μg/L	1	B3J3128	11/04/13	11/05/13 10:00	EPA 608	
PCB-1221	ND	0.50	н	н	II.	H .	11	н	
PCB-1232	ND	0.50	н	н		n	11	н	
PCB-1242	ND	0.50	н	н		Н.	n	11	
PCB-1248	ND	0.50	н	н		н	11	n	
PCB-1254	ND	0.50	н	н		н	н	н	
PCB-1260	ND	0.50	"	п		н	0	п	
Surrogate: Decachlorobiphenyl		42.8 %	42-	147	"	"	п	"	
Surrogate: Tetrachloro-meta-xylene		58.0 %		147	11	"	"	"	
C-B06-5A-102913-BLK (1310398-10) Lic	uid Sampled	l: 10/29/13 0	4:30 Re	ceived: 10/	29/13 13:5	0			
Aldrin	ND	0.075	μg/L	1	B3J3128	11/04/13	11/05/13 10:00	EPA 608	
ICH-alpha	ND	0.010	"	н	н	11	11	11	
HCH-beta	ND	0.050	н	11	n	. 11	n	n	
HCH-delta	ND	0.10	n.	11	н			н	
HCH-gamma (Lindane)	ND	0.20	н	11	н	U.	11	н	
Chlordane	ND	0.050	н	· 9	н	u.	Ð	н	
4,4′-DDD	ND	0.010	"	0	н	u.	II.	п	
1,4′-DDE	ND	0.010	n	11	11-	н	н		
4,4′-DDT	ND	0.010		9	11	н	n	11	
Dieldrin	ND	0.010	u.		14	п	н	11	
			n.	n	11	 N		u.	
Endosulfan I Endosulfan II	ND	0.020	u.	ut.	11	"	11	11 11	
Endosulfan II	ND	0.050	"						
Endosulfan sulfate	ND	0.050		"	11		"	n	
Bndrin	ND	0.10	11	н	11:	11	11	н	
Endrin aldehyde	ND	0.050	11	н	11	11	11	м	
(T) (11.	ND	0.010	11	н	u.	9	11	н	
Heptachlor Heptachlor epoxide	ND	0.010	н	н	н	81	**	Ц	
		0.010 1.0 0.50	11 11	н	n N	97 87	4 11	11 11	

26052 Merit Circle Suite 105, Laguna Hills, California 92653 Telephone: (949) 348-9389 Fax: (949) 348-9115 E-Mail: sierralabs @ sierralabs.net

A

AMEC 9177 Sky Park Court Suite A		Project Num	oject: Sai nber: [no	n Diego A nel	irport (20	13)		Repor	ed:
San Diego CA, 92123		Project Man	-	-	enhold			11/14/13	10:56
						41	0		
Orgai	nocniorii	ne Pesticido		•		etnoa ov	0		
· .		Sierra An	alytica	l Labs, In	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
L C-B06-5A-102913-BLK (1310398-10) Liquid	Sample	l: 10/29/13 04	1:30 Re	ceived: 10/	29/13 13:5	0			
PCB-1221	ND	0.50	μg/L	1	B3J3128	11/04/13	11/05/13 10:00	EPA 608	
PCB-1232	ND	0.50	н н		11	"	11	11	
PCB-1242	ND	0,50		11	11	9	н	ji	
PCB-1248	ND	0.50	11	н	н	11	н	11	
PCB-1254	ND	0,50	н	н	н.	м	н	u	
PCB-1260	ND	0.50	н	10	n.	н	11	н	
Surrogate: Decachlorobiphenyl		75.6%	12	147	n	"	"		
Surrogate: Tetrachloro-meta-xylene		91.6 %		147	n	"	n		
							-		
C-B08-8-102913-DUP (1310398-11) Liquid	Sampled:	10/29/13 02:4	40 Rece	ived: 10/29	0/13 13:50				
PCB-1016	ND	0.50	μg/L	1	B3J3128	11/04/13	11/05/13 10:00	EPA 608	
PCB-1221	ND	0.50	11	н.	· 11	-11	n	U	
PCB-1232	ND	0.50	n	11	n	11	н	97	
PCB-1242	ND	0.50	н	0	11	h	л	11	
PCB-1248	ND	0.50	u.	0	.9	11	11	н	
PCB-1254	ND	0.50	11	11	N .	ЧĽ	п	н	
PCB-1260	ND	0.50	N	. H	и	н	n	н	
Surrogate: Decachlorobiphenyl		83.2 %	42-	147	"	"	11	"	
Surrogate: Tetrachloro-meta-xylene		66.8 %	42-	147	"	"	"	U	
S-B06-12-102913 (1310398-14) Liquid San	npled: 10/2	9/13 03:20 F	Received	10/29/13 1	13:50				
Aldrin	ND	0.075	μg/L	1	B3J3128	11/04/13	11/05/13 10:00	EPA 608	
HCH-alpha	ND	0.010	μ <u>e</u> μμ	1	"	н н	н	#	
HCH-beta	ND	0.050		п	9	н	u.	11	
HCH-delta	ND	0.10	11	н	11	u.	u.		
HCH-gamma (Lindane)	ND	0.20	N.	п	.8	0	.91	11	
Chlordane	ND	0.050	N		н	ų		н	
4,4'-DDD	ND	0.010	Н	.0	н	. 0		н	
4,4'-DDE	ND	0.010	л	U.	п	11	н	н	
4,4'-DDT	ND	0.010	U.	11	II.	11	0	п	
Dieldrin	ND	0.020	11	11	9	11	п	н	
Endosulfan I	ND	0.020		u		ш	п	N .	
Endosulfan II	ND	0.050	11	11	11	11	л	n	
Endosulfan sulfate	ND	0.050	11	н	Π.	n.	н.	п	
Endrin	ND	0.10	н	и	11	н		п	
Endrin aldehyde	ND	0.050	н	н	-9	п	0	п	ан 1 Ал
Heptachlor	ND	0.010	н	n	11	п	н	11	
Heptachlor epoxide	ND	0.010	н	н	п	н	н	и.	
Toxaphene	ND	1.0	н	н	-n	'n	n	-11	
PCB-1016	ND	0.50	н	н	п	n	.0	11	
PCB-1221	ND	0.50	н	н	. n	н	н	11	
		0.50		·					

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

26052 MERIT CIRCLE SUITE 105, LAGUNA HILLS, CALIFORNIA 92653 TELEPHONE: (949) 348-9389 Fax; (949) 348-9115 E-MAIL: SIERRALABS @ SIERRALABS.NET

Г

PCB-1260

Surrogate: Decachlorobiphenyl

Surrogate: Tetrachloro-meta-xylene

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123	Dugonoskiowia	Project Nı Project Ma	umber: [no nager: An	ne] 1anda Arch			0	Reporte 11/14/13	
,	Organochlorin	Sierra A		•			ð		
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S-B06-12-102913 (1310398-14) Liquid	Sampled: 10/29	/13 03:20	Received:	10/29/13	13:50				······································
PCB-1232	ND	0.50	μg/L	1	B3J3128	11/04/13	11/05/13 10:00	EPA 608	
PCB-1242	ND	0.50	11	11	u.	16	11	. "	
PCB-1248	ND	0.50	11	11	11	Ц	0	н	
PCB-1254	ND	0.50	11	11	<u>11.</u>	.11	0	11	

42-147

42-147

"

"

.11

.11

12

"

"

#

н.

ND

0.50

50.8 %

78.4 %

A	
SILR RA ANALYSICAL	

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	oject: San I mber: [none] nager: Aman]		13)		Reported 11/14/13 1	
	Total Petro	leum Hyd	lrocarbon	s (TPI	H) by GC	C/FID			
		Sierra Ar	nalytical L	abs, I	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
C-B01-1A-102913 (1310398-01) Liquid	Sampled: 10/2	9/13 03:30	Received: 1	0/29/13	13:50				· ·
Diesel Range Organics (C10-C24)	ND	0.050	mg/L	1	B3K0541	10/30/13	11/05/13 09:2	2 EPA 8015B	-
Surrogate: o-Terphenyl ` Jet-A	ND	<i>97.6 %</i> 0.050	<i>60-17.</i> "	5 "	<i>11</i> 11	11 11	n N	л Л	
Surrogate: o-Terphenyl Oil Range Organics (C22-C36)	ND	<i>97.6 %</i> 0.050	60-17.	5 "	<i>11</i> 11	<i>11</i> 11	11 11-	n n	
Surrogate: o-Terphenyl		97.6 %	60-17		"	ü	11	".	
	Sampled: 10/29/								
Diesel Range Organics (C10-C24)	ND	0.050	mg/L	1	B3K0541	10/30/13		4 EPA 8015B	
Surrogate: o-Terphenyl Jet-A	0.17	81.2 % 0.050	60-17 "	5	<i>11</i>	<i>ti</i> 11	11 11	n	D-4
Surrogate: o-Terphenyl Oil Range Organics (C22-C36)	0.25	81.2 % 0.050	60-17 "	5	"	<i>11</i> 11	11	11 11	D-4
Surrogate: o-Terphenyl		81.2 %	60-17	5	п	"	11	"	
C-B05-4-102913 (1310398-03) Liquid	Sampled: 10/29	/13 03:45 R	Received: 10	/29/13 1	3:50				
Diesel Range Organics (C10-C24)	ŅD	0.050	mg/L	1	B3K0541	10/30/13	11/05/13 09:4	5 EPA 8015B	
Surrogate: o-Terphenyl Jet-A	ND	<i>86.4 %</i> 0.050	60-17	5	// 11	<i>11</i>	n H	<i>11</i> 11	
Surrogate: o-Terphenyl Oil Range Organics (C22-C36)	0.15	<i>86.4 %</i> 0.050	60-17	5 .11	<i>11</i> 11	<i>11</i> 11	и И	<i>11</i> 11	
Surrogate: o-Terphenyl		86.4 %	60-17	5	"	"	11	"	
C-B06-5A-102913 (1310398-04) Liquid	Sampled: 10/2	29/13 04:30	Received: 1	0/29/13	13:50				
Diesel Range Organics (C10-C24)	ND	0.050	mg/L	1	B3K0541	10/30/13	11/05/13 09:5	6 EPA 8015B	
Surrogate: o-Terphenyl Jet-A	ND	94.0 % 0.050	60-17 "	'5 "	<i>11</i>	<i>11</i>	// 17	и 11	
Surrogate: o-Terphenyl Oil Range Organics (C22-C36)	ND	<i>94.0 %</i> 0.050	60-17 "	'5 "	// H	17 H	11 11	17 11	
Surrogate: o-Terphenyl		94.0 %	60-17	۲ ۶	"	"	"	"	•

Â
S. I. (R. 8. A ANALYS BAL

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nur	oject: San I nber: [none ager: Aman]		13)		Reported 11/14/13 1	
	Total Petro	oleum Hyd	lrocarbon	ıs (TPI	H) by G(C/FID			
		Sierra An	alytical L	labs, I	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
C-B07-6-102913 (1310398-05) Liquid	Sampled: 10/29	/13 04:00 R	eceived: 10/	29/13 1	3:50				
Diesel Range Organics (C10-C24)	ND	0.050	mg/L	1	B3K0541	10/30/13	11/05/13 10:0	8 EPA 8015B	
Surrogate: o-Terphenyl Jet-A	ND	76.4 % 0.050	<i>60-17</i> . "	5 "	"	<i>11</i> 11	11- 11	11 11	
Surrogate: o-Terphenyl Oil Range Organics (C22-C36)	0.24	76.4 % 0.050	60-17. "	5 "	"	<i>11</i> 11	11- 11	<i>n</i> H	
Surrogate: o-Terphenyl	S	76.4 %	60-17.	-	"	"	11	H	
C-B07-7-102913 (1310398-06) Liquid	ND	0.050				10/20/10	11/05/10 10 1		
Diesel Range Organics (C10-C24) Surrogate: o-Terphenyl	ND	93.2 %	mg/L 60-17	1	B3K0541	10/30/13	11/05/13 10:1	9 EPA 8015B	
Jet-A	ND	93.2 % 0.050	n 00-17.	"	н	н	11	N	
Surrogate: o-Terphenyl	· · · · ·	93.2 %	60-17	5	"	"	п	"	
Oil Range Organics (C22-C36)	0.14	0.050	11	¥I.	11	U.	n.	Ú .	
Surrogate: o-Terphenyl		93.2 %	60-17.	5		"	н	<i>II</i>	
C-B08-8-102913 (1310398-07) Liquid	Sampled: 10/29	/13 02:40 R	eceived: 10/	/29/13 1	3:50				
Diesel Range Organics (C10-C24)	ND	0.050	mg/L	1	B3K0541	10/30/13	11/05/13 10:3	0 EPA 8015B	
Surrogate: o-Terphenyl		84.0 %	60-17.	5	"	"	"	н	
Jet-A	ND	0.050	H	11	н	N	11	н	
Surrogate: o-Terphenyl		84.0 %	60-17		"	"	11	"	
Oil Range Organics (C22-C36)	0.15	0.050	n	11	"		н	н	
Surrogate: o-Terphenyl		84.0 %	60-17.	5	"	"	"	n	
C-B09-10B-102913 (1310398-08) Liqu	id Sampled: 10/	/29/13 03:00	Received:	10/29/13	3 13:50				
Diesel Range Organics (C10-C24)	ND	0.050	mg/L	1	B3K0541	10/30/13	11/05/13 10:4	2 EPA 8015B	
Surrogate: o-Terphenyl Jet-A	' ND	79.2 % 0.050	60-17. "	5 "	<i>"</i> "	<i>11</i>	<i>11</i> 11	// N	
Surrogate: o-Terphenyl		79.2 %	60-17	5	"	"	"	"	
Oil Range Organics (C22-C36)	0.23	0.050		v	11.	п	n	n	
Surrogate: o-Terphenyl		79.2 %	60-17	5		71	11.	"	

Oil Range Organics (C22-C36)

Surrogate: o-Terphenyl

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123			mber: [no	ne]	Airport (20 Menhold	13)		Reported 11/14/13 1	
	Total Petro	oleum Hyo	drocarb	ons (TP	H) by GO	C/FID		- <u>-</u>	
		Sierra Ai	nalytical	l Labs, I	nc.	•			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B12-9A-102913 (1310398-09) Liquid	Sampled: 10/2	9/13 03:10	Received	: 10/29/13	13:50		; .	•	
Diesel Range Organics (C10-C24)	ND	0.050	mg/L	1	B3K0541	10/30/13	11/05/13 10:53	EPA 8015B	
Surrogate: o-Terphenyl		85.2 %	60-	175	ıı	"	"	".	
Jet-A	ND	0.050	u	'n	41	. ¹¹	u	-11	
Surrogate: o-Terphenyl		85.2 %	60-	175	"	"	"	11	÷
Oil Range Organics (C22-C36)	0.18	0.050	n	U,	11	n	u	li -	
Surrogate: o-Terphenyl		85.2 %	60-	175	"	"	"	"	
C-B06-5A-102913-BLK (1310398-10) Li	iquid Sampled	1: 10/29/13 0	4:30 Re	ceived: 10	/29/13 13:5	0			
Diesel Range Organics (C10-C24)	ND	0.050	mg/L	1	B3K0541	10/30/13	11/05/13 11:04	EPA 8015B	
Surrogate: o-Terphenyl		88.8 %	60-	175	"	v	11	"	
Jet-A	ND	0.050	н	н	u	н	u	u.	
Surrogate: o-Terphenyl		88.8 %	60-	175	n	"	"	-11	
Oil Range Organics (C22-C36)	ND	0.050	n	n	Ш	11		11	
Surrogate: o-Terphenyl		88.8 %	60-	175	11	"	11	n	
C-B08-8-102913-DUP (1310398-11) Liq	uid Sampled:	10/29/13 02	:40 Rece	ived: 10/2	9/13 13:50		,		
Diesel Range Organics (C10-C24)	·ND	0.050	mg/L	1	B3K0541	10/30/13	11/05/13 11:16	5 EPA 8015B	···· ·· ···
Surrogate: o-Terphenyl		85.6 %	60-	175	"	"	"	"	
Jet-A	ND	0.050	11	н	н	D .	н	N	
Surrogate: o-Terphenyl		85.6 %	60-	175 -	.11	"	"	"	
	0.12	0.050		u.	н		н	п	

n

60-175

0.050

85.6 %

n

11

11

"

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

0.13

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	mber: [no	n Diego A ne] 1anda Arch	arport (20	13)		Reported 11/14/13 1	
	olynuclear A					hod 831())	11/14/15/1	0.50
1	orynucical E	Sierra Ai	-	-		100 031	,		
<u> </u>		Reporting					····		
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B01-1A-102913 (1310398-01) Liquid	Sampled: 10/2	29/13 03:30	Received	: 10/29/13	13:50				
Naphthalene	ND	0.500	μg/L	1	B3K0739	11/04/13	11/11/13 13:51	EPA 8310	
Acenaphthylene	ND	1.00	11	н	u.	н	n	"	
Acenaphthene	ND	1.00	11	н	u.		н	"	
Fluorene	ND	0.100	н	n	11	11	н	"	
Phenanthrene	ND	0.100	н	н	11	11	н	n	
Anthracene	ND	0.0500	н	n	н	11	н	11	
Fluoranthene	ND	0.100	n		н	11	н	9	
Pyrene	ND	0.100	n	u.	н	11	н	3 - 10	
Benzo (a) anthracene	ND	0.0500	н		n		n	11	
Chrysene	ND	0.100	н	0	н	11	и.	11	
Benzo (b) fluoranthene	ND	0.100	0	н	н	н	n	11	
Benzo (k) fluoranthene	ND	0.0500	11	н	H.	H.	n	11	
Benzo (a) pyrene	ND	0.0500	0	н	W.	н	н	11	
Dibenzo(a,h)anthracene	ND	0.100	11	н	47	н	н	11	
Benzo (g,h,i) perylene	ND	0.100	11	11	11	н	н	11	
Indeno (1,2,3-cd) pyrene	ND	0.100	11	n	11	н	H.	II	
Surrogate: Decafluorobiphenyl		56.4 %	30-	115	"	"	н	n	
C-B03-2-102913 (1310398-02) Liquid	Sampled: 10/29	/13 03:55 I	Received:	10/29/13 1	3:50	· .			
Naphthalene	ND	0.500	μg/L	1	B3K0739	11/04/13	11/11/13 13:51	EPA 8310	
Acenaphthylene	ND	1.00	н	"	н	11	11	n	
Acenaphthene	ND	1.00	н		n	11	11	n	
Fluorene	ND	0.100	н	"	н	11	u.	н ,	
Phenanthrene	ND	0.100	н	1ľ	· N	11	u.	R.	
Anthracene	ND	0.0500	н	11	n	11	11	n	
Fluoranthene	ND	0.100	н	11	и	11	11	n	
Pyrene	ND	0.100	0	11	н	11	n	п	
Benzo (a) anthracene	ND	0.0500	11	11	н	"	-11	н	
Chrysene	ND	0.100	11 1	11	н	"	u.	11	
Benzo (b) fluoranthene	ND	0.100	н	11	н		п	н	
Benzo (k) fluoranthene	ND	0.0500	н	11	н		n	11	
Benzo (a) pyrene	ND	0.0500	н	11	и		н	11	
Dibenzo(a,h)anthracene	ND	0.100	н	11	н	н	н	11	
Benzo (g,h,i) perylene	ND	0.100	n	11	И	n	н	11	
Indeno (1,2,3-cd) pyrene	ND	0.100	n	11	11	۳.	H	11	
Surrogate: Decafluorobiphenyl		82.6 %	30-	115	"	"	"	"	

Pyrene

Chrysene

Benzo (a) anthracene

Benzo (b) fluoranthene

Benzo (k) fluoranthene

Dibenzo(a,h)anthracene

Indeno (1,2,3-cd) pyrene

Surrogate: Decafluorobiphenyl

Benzo (g,h,i) perylene

Benzo (a) pyrene

AMEC	Project: San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	11/14/13 10:56

Polynuclear Aromatic Compounds by EPA Method 8310

		Sierra An	alytical	l Labs, I	nc.			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method
C-B05-4-102913 (1310398-03) Liquid	Sampled: 10/29/	/13 03:45 R	eceived:	10/29/13 1	3:50		· · ·	
Naphthalene	ND	0.500	μg/L	1	B3K0739	11/04/13	11/11/13 13:51	EPA 8310
Acenaphthylene	ND	1.00	8	IF.	11	11	н	'n
Acenaphthene	ND	1.00	н	ж	н	11	11	н
Fluorene	ND	0.100	11	n	н	11	п	н
Phenanthrene	ND	0.100	9	u	11		11	II
Anthracene	ND	0.0500	11	11	0	н	11	11
Fluoranthene	ND	0.100	н	11	· 11	н	n	н

н

в

...

11

30-115

u,

,ı

ш

н

"

п

n

11

н

в

н

п

"

н

"

C-B06-5A-102913 (1310398-04) Liquid Sampled: 10/29/13 04:30 Received: 10/29/13 13:50

ND

ND

ND

ND

ND

ND

ND

ND

ND

0.100

0.0500

0.100

0.100

0.0500

0.0500

0.100

0.100

0.100

53.6%

Naphthalene	ND	0.500	μg/L	1	B3K0739	11/04/13	11/11/13 13:51	EPA 8310	
Acenaphthylene	ND	1.00	н	11	0	н	н	n	
Acenaphthene	ND	1.00	н	11	11	н	н	n	
Fluorene	ND	0.100	0	, u	υ	n	и	н	
Phenanthrene	ND	0.100	0	N	н	11	u.	н	
Anthracene	ND	0.0500	л	8	"	u.	11	н	
Fluoranthene	ND	0.100	n	п	н	11	11	u	
Pyrene	ND	0.100	и	.0	н		"	н	
Benzo (a) anthracene	ND	0.0500	М	н	н	"	11		
Chrysene	ND	0.100	н	U	n		11		
Benzo (b) fluoranthene	ND	0.100	Н	u.	n	"	чг [.]	и	
Benzo (k) fluoranthene	ND	0.0500	н	0			u.	н	
Benzo (a) pyrene	ND	0.0500	н	u	n	0	11	п	
Dibenzo(a,h)anthracene	ND	0.100	'n	. 0	n			н	
Benzo (g,h,i) perylene	ND	0.100	н	u.	u		н	н	
Indeno (1,2,3-cd) pyrene	. ND	0.100	н	и	. II	u	н	μ	
Surrogate: Decafluorobiphenyl		92.0 %	30	115	"	"	"	п	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

26052 MERIT CIRCLE SUITE 105, LAGUNA HILLS, CALIFORNIA 92653 TELEPHONE: (949) 348-9389 FAX: (949) 348-9115 E-MAIL: SIERRALABS @ SIERRALABS.NET

Notes

AMEC 9177 Sky Park Court Suite A		Pı Project Nu	oject: Sai mber: [no	n Diego A me]	irport (20	13)		Reported	:
San Diego CA, 92123		Project Mar		-	enhold			11/14/13 10	
	iclear A	Aromatic C				hod 831()		
		Sierra Aı	nalytical	l Labs, I	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
C-B06-5A-102913-BLK (1310398-10) Liquid	Sample	d: 10/29/13 0	4:30 Re	ceived: 10/	29/13 13:5	0			
Naphthalene	ND	0.500	μg/L	1	B3K0739	11/04/13	11/11/13 13:51	EPA 8310	
Acenaphthylene	ND	1.00	**	11	n	н	н	u.	
Acenaphthene	ND [•]	1.00	11	. 11	u.	н	н	11	
Huorene	ND	0.100		н	n	н	н	0	
Phenanthrene	ND	0.100	11	М	11	11	н	11	
Anthracene	ND	0.0500	11	м	11	. 11	н	11	
luoranthene	ND	0.100	H-	. 11	11	n	н	11	
Pyrene	ND	0.100		н	11	17	н	R.	
Benzo (a) anthracene	ND	0.0500	н	11	11	11	94	11	
Chrysene	ND	0.100	н	11	и :	11	н	11	
Benzo (b) fluoranthene	ND	0.100	н	n	н	11	11	B.	
Benzo (k) fluoranthene	ND	0.0500	н		н	9	11	If	
Benzo (a) pyrene	ND	0.0500	н		́н	11	11	11	
Dibenzo(a,h)anthracene	ND	0.100	п	u.	н	U.	11	11	
Benzo (g,h,i) perylene	ND	0.100	н		н	11		ŧŀ	
ndeno (1,2,3-cd) pyrene	ND	0.100	н	n	н	11	н	11	
Surrogate: Decafluorobiphenyl		52.8 %	30-	115	"	н	n	"	
5-B06-12-102913 (1310398-14) Liquid Samp	led: 10/2	9/13 03:20 J	Received:	10/29/13	13:50				
Naphthalene	ND	0.500	μg/L	1	B3K0739	11/04/13	11/11/13 13:51	EPA 8310	
Acenaphthylene	ND	1.00	н	"	11	11	'n	0	
Acenaphthene	ND	1.00	н	11	11	11	н	н	
Fluorene	ND	0.100	н	н.	11	н	11	7 H	
Phenanthrene	ND	0.100	н		11	н	U.	н	
Anthracene	ND	0.0500	н	n	11	n	н	н	
Fluoranthene	ND	0.100	п	п.	0	n	11	н	
Pyrene	ND	0.100	н	н	0	n	11	н	
Benzo (a) anthracene	ND	0.0500	н	н	H.	н	11	и	
Chrysene	ND	0.100	н	н	II.	n	11	и	
Benzo (b) fluoranthene	ND	0.100	н	н	n	п.	11.	11	
Benzo (k) fluoranthene	ND	0.0500	19	н	ч.	0	п	a	
Benzo (a) pyrene	ND	0.0500		н	n	11	н	41	
Dibenzo(a,h)anthracene	ND	0.100	11	11	n	11	н	н	
						11			
Benzo (g,h,i) perylene ndeno (1,2,3-cd) pyrene	ND ND	0.100 0.100	"	. М	n	11	a	н	

,

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123	· ·	Project Nu	nber: [no	n Diego Ai one] nanda Arche		013)			Reporte 11/14/13	
	Metals by	EPA 200 Se	eries Mo	ethods - Qu	uality C	ontrol				
		Sierra An	alytica	ıl Labs, Ir	ıc.					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3J2939 - EPA 200 Series								, <u> </u>		
Blank (B3J2939-BLK1)				Prepared:	10/29/13	Analyzed:	11/04/13			
Hexavalent Chromium	ND	0.0020	mg/L					· ·		
CE (D2 12020 DE1)				Prenared	10/29/13	Analyzed:	11/04/13			
LCS (B3J2939-BS1) Hexavalent Chromium	0.00277	0.0020	mg/L	0.00300	10/2/15	92.3	85-115			
Matrix Spike (B3J2939-MS1)		rce: 131039				Analyzed				
Hexavalent Chromium	0.00301	0.0020	mg/L	0.00300	ND	100	80-120		•	
Matrix Spikc Dup (B3J2939-MSD1)	Sou	irce: 131039	8-01	Prepared:	10/29/13	Analyzed:	11/04/13			
Hexavalent Chromium	0.00329	0.0020	mg/L	0.00300	ND	110	80-120	8.89	20	
				•						
Batch B3J2949 - EPA 200 Series										
Blank (B3J2949-BLK1)				Prepared:	10/29/13	Analyzed	: 10/31/13			
Aluminum	ND	25	μg/L							
Arsenic	ND	3.0	17							
Cadmium	ND	2.0	н							
Chromium	ND	3.0	11							
Copper	ND	1.0	н							
Iron	ND	0.025	mg/L							
Lead	ND	1.0	μg/L							
Nickel	ND	5.0								
Silver	ND	1.5	11							
Zinc	ND	1.0	n							
Blank (B3J2949-BLK2)				Prepared:	10/29/13	Analyzed	: 10/31/13			
Aluminum	ND	25	μg/L		•	J				
Arsenic	ND	3.0	10							
Cadmiun	ND	2.0	н							
Chromium	ND	3.0	11							
Copper	. ND	1.0	н.							
Iron	ND	0.025	mg/L							
Lead	ND	1.0	μg/L							
Nickel	ND	5.0	, С	1						
Silver	ND	1.5	н							
Zinc	ND	1.0	н							

26052 Merit Circle Suite 105, Laguna Hills, California 92653 Telephone: (949) 348-9389 Fax: (949) 348-9115 E-Mail: sierralabs @ sierralabs.net

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	nber: [n	n Diego A one] nanda Arch		013)			Reporte 11/14/13	
	Metals by	EPA 200 Se	eries Me	ethods - Q	uality Co	ontrol				
		Sierra An	alytica	l Labs, I	nc.					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3J2949 - EPA 200 Series										
LCS (B3J2949-BS1)				Prepared:	10/29/13	Analyzed	: 10/31/13			- Carbon
luminum	97.1	25	μg/L	100	<u> </u>	97,1	85-115			
Arsenic	105	3.0	н.	100		105	85-115			
Cadmium	99.3	2.0		100		99.3	85-115			
Chromium	101	3.0	"	100		101	85-115			
Copper	109	1.0		100		109	85-115			
ron	0.104	0.025	mg/L	0.100		104	85-115			
lead	98,0	1.0	μg/L	100		98.0	85-115			
lickel	101	5.0		100		101	85-115			
ilver	102	1.5	н	100		102	85-115			
linc	98.5	1.0	n	100		98.5	85-115			
LCS (B3J2949-BS2)				Prepared:	10/29/13	Analyzed	: 10/31/13			
Aluminum	93.4	25	μg/L	100		93.4	85-115			
Arsenic	110	3.0	u.	100		110	85-115			
admium	99.4	2.0	11	100		99.4	85-115			
Chromium	100	3.0		100		100	85-115			
opper	96.1	1.0	11	100		96.1	85-115			
ron	0.103	0.025	mg/L	0.100		103	85-115			
ead	89.8	1.0	μg/L	100		89.8	85-115			
Jickel	105	5.0	11	100		105	85-115			
ilver	104	1.5	"	100		103	85-115			
Cinc	101	1.0	-11	100		102	85-115			
Matrix Spike (B3J2949-MS1)	Sor	irce: 131039	8-10	Prepared:	10/29/13	Analyzed	: 10/31/13		•	
Aluminum	101	25	μg/L	100	ND	101	70-130			
rsenic	110	3.0	"	100	ND	110	70-130			
admium	104	2.0	11	100	ND	104	70-130			
chromium	106	3.0	н	100	ND	106	75-130			
opper.	110	1.0	н	100	0.90	109	70-130			
TON	0.111	0.025	mg/L	0.100	ND	111	70-130			
ead	98.7	1.0	μg/L	100	0.70	98.0	70-130			
lickel	106	5.0	μg/12 11	100	ND	106	70-130			
ilver	106	1.5	-11	100	ND	106	70-130			
Zinc	110	1.5	Ĥ	100	0.20	110	70-130			

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	nber: [no	m Diego A one] nanda Arch)13)			Reporte 11/14/13	
· · · · · · · · · · · · · · · · · · ·	Metals by F	EPA 200 Se	eries Me	ethods - Q	uality Co	ontrol				
	•	Sierra An	alytica	d Labs, Ir	nc.					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3J2949 - EPA 200 Series	·								·	
Matrix Spike (B3J2949-MS2)	Sou	rce: 131039	8-11	Prepared:	10/29/13	Analyzed	1: 10/31/13			
Aluminum	137	25	μg/L	100	36	101	70-130	,		
Arsenic	103	3.0	u, C	100	ND	103	70-130			
Cadinium	102	2.0		100	ND	102	70-130			
Chromium	102	3.0	n	100	ND	102	75-130			
Copper	165	1.0		100	57	108	70-130			
ron	0,156	0.025	mg/L	0.100	0.054	102	70-130			
Lead	87,9	1.0	μg/L	100	ND	87.9	70-130			
lickel	104	5.0	r-8 — II	100	3.5	100	70-130			
Silver	102	1.5	n	100	0.30	102	70-130			
Zinc	240	1.0	11	100	130	110	70-130			
Matrix Spike Dup (B3J2949-MSD1)	Sou	rce: 131039	8-10	Prepared:	10/29/13	Analyzed	1: 10/31/13			
Aluminum	98.4	25	μg/L	100	ND	98.4	70-130	2.61	30	
Arsenic	106	3.0	11	100	ND	106	70-130	3.70	30	
Cadmium	103	2.0	н	100	ND	103	70-130	0.966	30	
Chromium	105	3.0	н :	100	ND	105	75-130	0.948	30	
Copper	107	1.0	9	100	0.90	106	70-130	2.76	30	
ron	0.105	0.025	mg/L	0.100	ND	105	70-130	5.56	30	
Lead	101	1.0	μg/L	100	0,70	100	70-130	2.30	30	
Nickel	105	5.0	μ <u>β</u> <u>μ</u>	100	ND	105	70-130	0.948	30	
Silver	103	1.5	я	100	ND	103	70-130	1.90	30	
Zine	101	1.0	n	100	0.20	101	70-130	8.53	30	
Matrix Spike Dup (B3J2949-MSD2)	· Sou	rce: 131039	8-11	Prepared:	10/29/13	Analyzed	1: 10/31/13			
Aluminum	134	25	μg/L	100	36	98.0	70-130	2,21	30	
Arsenic	106	3.0	11	100	ND	106	70-130	2.87	30	
Cadmium	97.9	2.0	11	100	ND	97.9	70-130	4.10	30	
	103	3.0	-n	100	ND	103	75-130	0.976	30	
hromum	163	1.0	н	100	57	105	70-130	1.22	30	
•		1.0				103	70-130	0.639	30	
Copper		0.025	ma/I	0 100	0.054					
Copper (ron	0.157	0,025	mg/L	0.100	0.054 ND					
Chromium Copper Iron Lead	0.157 118	1.0	μg/L	100	ND	118	70-130	29.2	30	
Copper Iron	0.157		-							

26052 Merit Circle Suite 105, Laguna Hills, California 92653 Telephone: (949) 348-9389 Fax: (949) 348-9115 E-Mail: sierralabs @ sierralabs.net

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	mber: [n	an Diego A one] manda Arch	· ·)13)			Reporte 11/14/13 1	
	Metals by]	EPA 200 So	eries M	ethods - Q	uality Co	outrol				
		Sierra Ar	nalytica	al Labs, I	nc.					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3J3042 - EPA 200 Series										
Blank (B3J3042-BLK1)				Prepared	& Analyze	d: 10/30/3	13			
Mercury	ND	0,00030	mg/L							
LCS (B3J3042-BS1)				Prepared	& Analyze	d: 10/30/3	13			
Mercury	0.00110	0.00030	mg/L	0.00100		110	75-125			
Matrix Spike (B3J3042-MS1)	Sou	irce: 131039	8-01	Prepared	& Analyze	ed: 10/30/	13			
Mercury	0.00077	0.00030	mg/L	0.00100	0.00002	75.0	75-125			
Matrix Spike Dup (B3J3042-MSD1)	Sou	irce: 131039	8-01	Prepared	& Analyze	ed: 10/30/	13 .			
Mercury	0.00077	0.00030	mg/L	0.00100	0.00002	75.0	75-125	0.00	20	

als (Dissolve	d) by EPA							11/14/13 1	0:56
		200 Ser	ies Methoo	ls - Qua	lity Contr	ol	•		
	Sierra Ar	nalytica	l Labs, In	ıc.					
Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
			Prepared:	10/29/13	Analyzed:	11/04/13			
ND	0.0020	mg/L							
			Prepared:	10/29/13	Analyzed:	11/04/13			
0.00298	0,0020	mg/L	0.00300		99.3	85-115			
Sou	urea: 131030	8-01	Prenared	10/29/13	Analyzed	11/04/13			
			0.00300	ND	100	80-120			
					-		0 222	20	
0.00302	0,0020	mg/L	0.00300	ND	101	80-120	0.332	20	
			Prepared a	& Analyz	ed: 10/30/1	3			
ND	0.00073	mg/L							
•			Propaged	& Analyz	ad: 10/30/1	3			
0.00106	0.00073	mg/L	^	x Analyz				· · ·	
		_							
0.00085	0,00073	mg/L	0.00100	ND	85,0	80~120			
0.00086	0.00073	mg/L	0.00100	ND	86.0	80-120	1.17	20	
			Prepared	10/30/13	Analyzed	10/31/13			
ND	3.0	μg/L	*	1010 01 10			i		
ND	2.0	"							
ND	3.0	11							
ND	1.0	11							
ND									
LND	• 1.0					•			
	ND 0.00298 Sou 0.00301 Sou 0.00302 ND 0.00106 Sou 0.00085 Sou 0.00086 ND ND ND ND ND ND ND	ND 0.0020 0.00298 0.0020 Source: 131039 0.00301 0.0020 Source: 131039 0.00302 0.0020 Source: 131039 0.00106 0.00073 Source: 131039 0.00106 0.00073 Source: 131039 0.00085 0.00073 Source: 131039 0.00086 0.00073 ND ND 3.0 ND 2.0 ND 3.0 ND 1.0 ND 5.0 ND 1.5	ND 0.0020 mg/L 0.00298 0.0020 mg/L Source: 1310398-01 0.00301 0.0020 mg/L Source: 1310398-01 0.00302 0.0020 mg/L 0.00302 0.0020 mg/L 0.00302 0.0020 mg/L 0.00106 0.00073 mg/L 0.00085 0.00073 mg/L Source: 1310398-01 0.00086 0.00073 mg/L ND 3.0 mg/L ND 3.0 " ND 3.0 " ND ND 3.0 " ND ND ND 1.0 " ND ND ND ND	ND 0.0020 mg/L ND 0.0020 mg/L Prepared: 0.00298 0.0020 mg/L 0.00300 Source: 1310398-01 Prepared: 0.00301 0.0020 mg/L 0.00300 Source: 1310398-01 Prepared: 0.00302 0.0020 mg/L 0.00300 Source: 1310398-01 Prepared: 0.00302 0.0020 mg/L 0.00300 ND 0.00073 mg/L 0.00100 Source: 1310398-01 Prepared and and and and and and and and and an	ND 0.0020 mg/L Prepared: 10/29/13 0.00298 0.0020 mg/L 0.00298 0.0020 mg/L 0.00300 Source: 1310398-01 Prepared: 10/29/13 0.00301 0.0020 mg/L 0.00302 mg/L 0.00300 Source: 1310398-01 Prepared: 0.00302 0.0020 mg/L 0.00300 ND 0.0020 mg/L 0.00300 ND 0.0020 mg/L 0.00300 ND 0.0020 mg/L 0.00300 ND ND 0.0020 mg/L 0.00300 ND Source: 1310398-01 Prepared & Analyz 0.00106 0.00073 mg/L 0.00100 ND Source: 1310398-01 Prepared & Analyz 0.00085 0.00073 mg/L 0.00100 ND Source: 1310398-01 Prepared & Analyz 0.00086 0.00073 <td< td=""><td>ND 0.0020 mg/L ND 0.0020 mg/L Prepared: 10/29/13 Analyzed: 0.00298 0.0020 mg/L 0.00300 99.3 Source: 1310398-01 Prepared: 10/29/13 Analyzed: 0.00301 0.0020 mg/L 0.00300 ND 100 Source: 1310398-01 Prepared: 10/29/13 Analyzed: 0.00302 0.0020 mg/L 0.00300 ND 101 Prepared: 10/29/13 Analyzed: 0.00302 0.0020 mg/L 0.00300 ND 101 Prepared: 10/29/13 Analyzed: 0.00302 0.0020 mg/L 0.00300 ND 101 Prepared & Analyzed: 10/30/1 0.00106 0.00073 mg/L 0.00100 ND 85.0 Source: 1310398-01 Prepared & Analyzed: 10/30/1 0.000086 0.00073 mg/L</td><td>Prepared: 10/29/13 Analyzed: 11/04/13 ND 0.0020 mg/L Prepared: 10/29/13 Analyzed: 11/04/13 0.00298 0.0020 mg/L Source: 1310398-01 Prepared: 10/29/13 Analyzed: 11/04/13 0.00301 0.0020 mg/L 0.00300 ND 100 85-115 Source: 1310398-01 Prepared: 10/29/13 Analyzed: 11/04/13 0.00301 0.0020 mg/L 0.00300 ND 100 80-120 Source: 1310398-01 Prepared: 10/29/13 Analyzed: 11/04/13 0.00300 ND 101 80-120 ND 0.0020 mg/L 0.00300 ND 101 80-120 Prepared & Analyzed: 10/30/13 mg/L 0.00100 ND 80-120 Source: 1310398-01 Prepared & Analyzed: 10/30/13 Prepared & Analyzed: 10/30/13 0.00085 0.00073 mg/L 0.00100 ND 85.0 80-120 Source: 1310398-01 Prepared & Analyzed: 10/30/13 ND 1.0 1.0 1.0 0.000</td><td>Prepared: 10/29/13 Analyzed: 11/04/13 ND 0.0020 mg/L Prepared: 10/29/13 Analyzed: 11/04/13 0.00298 0.0020 mg/L 0.00300 99.3 85-115 Source: 1310398-01 Prepared: 10/29/13 Analyzed: 11/04/13 0.00301 0.0020 mg/L 0.00300 ND 100 80-120 Source: 1310398-01 Prepared: 10/29/13 Analyzed: 11/04/13 0.00302 0.0020 mg/L 0.00300 ND 100 80-120 0.332 0.00302 0.0020 mg/L 0.00300 ND 101 80-120 0.332 0.00302 0.0020 mg/L 0.00300 ND 1030/13 0.332 ND 0.00073 mg/L 0.00100 ND 85.0 80-120 Source: 1310398-01 Prepared & Analyzed: 10/30/13 1.17 0.00086 0.00073</td><td>ND 0.0020 mg/L Prepared: 10/29/13 Analyzed: 11/04/13 0.00298 0.0020 mg/L 0.00208 0.0020 mg/L 0.00298 0.0020 mg/L 0.00301 0.0020 mg/L 0.00301 0.0020 mg/L 0.00301 0.0020 mg/L 0.00302 0.0020 mg/L 0.00302 0.0020 mg/L 0.00300 ND 100 80-120 Source: 1310398-01 Prepared: 10/29/13 Analyzed: 11/04/13 0.00302 0.0020 mg/L 0.00300 ND 0.0020 mg/L 0.00300 ND 101 80-120 0.332 20 Prepared & Analyzed: 10/30/13 ND 0.00073 mg/L 0.00100 106 80-120 Source: 1310398-01 Prepared & Analyzed: 10/30/13 Output: 11/04/13 Output: 11</td></td<>	ND 0.0020 mg/L ND 0.0020 mg/L Prepared: 10/29/13 Analyzed: 0.00298 0.0020 mg/L 0.00300 99.3 Source: 1310398-01 Prepared: 10/29/13 Analyzed: 0.00301 0.0020 mg/L 0.00300 ND 100 Source: 1310398-01 Prepared: 10/29/13 Analyzed: 0.00302 0.0020 mg/L 0.00300 ND 101 Prepared: 10/29/13 Analyzed: 0.00302 0.0020 mg/L 0.00300 ND 101 Prepared: 10/29/13 Analyzed: 0.00302 0.0020 mg/L 0.00300 ND 101 Prepared & Analyzed: 10/30/1 0.00106 0.00073 mg/L 0.00100 ND 85.0 Source: 1310398-01 Prepared & Analyzed: 10/30/1 0.000086 0.00073 mg/L	Prepared: 10/29/13 Analyzed: 11/04/13 ND 0.0020 mg/L Prepared: 10/29/13 Analyzed: 11/04/13 0.00298 0.0020 mg/L Source: 1310398-01 Prepared: 10/29/13 Analyzed: 11/04/13 0.00301 0.0020 mg/L 0.00300 ND 100 85-115 Source: 1310398-01 Prepared: 10/29/13 Analyzed: 11/04/13 0.00301 0.0020 mg/L 0.00300 ND 100 80-120 Source: 1310398-01 Prepared: 10/29/13 Analyzed: 11/04/13 0.00300 ND 101 80-120 ND 0.0020 mg/L 0.00300 ND 101 80-120 Prepared & Analyzed: 10/30/13 mg/L 0.00100 ND 80-120 Source: 1310398-01 Prepared & Analyzed: 10/30/13 Prepared & Analyzed: 10/30/13 0.00085 0.00073 mg/L 0.00100 ND 85.0 80-120 Source: 1310398-01 Prepared & Analyzed: 10/30/13 ND 1.0 1.0 1.0 0.000	Prepared: 10/29/13 Analyzed: 11/04/13 ND 0.0020 mg/L Prepared: 10/29/13 Analyzed: 11/04/13 0.00298 0.0020 mg/L 0.00300 99.3 85-115 Source: 1310398-01 Prepared: 10/29/13 Analyzed: 11/04/13 0.00301 0.0020 mg/L 0.00300 ND 100 80-120 Source: 1310398-01 Prepared: 10/29/13 Analyzed: 11/04/13 0.00302 0.0020 mg/L 0.00300 ND 100 80-120 0.332 0.00302 0.0020 mg/L 0.00300 ND 101 80-120 0.332 0.00302 0.0020 mg/L 0.00300 ND 1030/13 0.332 ND 0.00073 mg/L 0.00100 ND 85.0 80-120 Source: 1310398-01 Prepared & Analyzed: 10/30/13 1.17 0.00086 0.00073	ND 0.0020 mg/L Prepared: 10/29/13 Analyzed: 11/04/13 0.00298 0.0020 mg/L 0.00208 0.0020 mg/L 0.00298 0.0020 mg/L 0.00301 0.0020 mg/L 0.00301 0.0020 mg/L 0.00301 0.0020 mg/L 0.00302 0.0020 mg/L 0.00302 0.0020 mg/L 0.00300 ND 100 80-120 Source: 1310398-01 Prepared: 10/29/13 Analyzed: 11/04/13 0.00302 0.0020 mg/L 0.00300 ND 0.0020 mg/L 0.00300 ND 101 80-120 0.332 20 Prepared & Analyzed: 10/30/13 ND 0.00073 mg/L 0.00100 106 80-120 Source: 1310398-01 Prepared & Analyzed: 10/30/13 Output: 11/04/13 Output: 11

26052 MERIT CIRCLE SUITE 105, LAGUNA HILLS, CALIFORNIA 92653 TELEPHONE: (949) 348-9389 FAX: (949) 348-9115 E-MAIL: SIERRALABS @ SIERRALABS.NET

Project Number:	[none]	Reported:
Project Manager:	Amanda Archenhold	11/14/13 10:56
	-	Project Number: [none] Project Manager: Amanda Archenhold

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

Sierra A	Analytical	Labs,	Inc.
----------	------------	-------	------

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3J3045 - EPA 200 Series						•				
LCS (B3J3045-BS1)				Prepared:	10/30/13	Analyzed	: 10/31/13	_		
Arsenic	104	3.0	µg/L	100		104	85-115			
Cadmium	99.8	2.0	11	100		99.8	85-115			
Chromium	104	3.0	ų	100		104	85-115			
Copper	103	1.0	0	100		103	85-115			
Lead	109	2.0	н	100		109	85-115			
Nickel	98.2	5.0	н	100		98.2	85-115			
Silver	104	1.5	н	100		104	85-115			
Zinc	105	1.0	મ	100		105	85-115			
Matrix Spike (B3J3045-MS1)	Sou	arce: 131039	8-11	Prepared:	10/30/13	Analyzed	: 10/31/13			
Arsenic	105	3.0	μg/L	100	1.6	103	70-130			
Cadmium	101	2.0	11	100	0.50	100	70-130			
Chromium	102	3.0	"	100	ND	102	70-130			
Copper	158	1.0	м	100	52	106	70-130			
Lead	104	2.0	н	100	ND	104	70-130			
Nickel	103	5.0	11	100	2.1	101	70-130			
Silver	101	1.5	11	100	ND	101	70-130			
Zinc	194	1.0	ш	100	100	94.0	70-130			
Matrix Spike Dup (B3J3045-MSD1)	So	urce: 131039	8-11	Prepared:	10/30/13	Analyzed	: 10/31/13			
Arsenic	107	3.0	μg/L	100	1.6	105	70-130	1.89	30	
Cadmium	100	2.0	11	100	0.50	99.5	70-130	0.995	30	
Chromium	101	3.0	11	100	ND	101	70-130	0.985	30	
Copper	153	1.0	11	100	52	101	70-130	3.22	30	
Lead	99.3	2.0	-11	100	ND	99.3	70-130	4.62	30	
Nickel	104	5.0		100	2.1	102	70-130	0.966	30	
Silver	101	1.5	11	100	ND	101	70-130	0.00	30	
Zinc	197	1.0	n.	100	100	97.0	70-130	1.53	30	

AMEC	Project: San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	11/14/13 10:56

Organochlorine Pesticides and PCBs by EPA Method 608 - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units -	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3J3128 - EPA 3510C Sep F										
Batch B3J3128 - EFA 3510C Sep F Blank (B3J3128-BLK1)				Prepared:	11/04/13	Analyzed	: 11/05/13		<u> </u>	
Aldrin	ND	0.075	μg/L							
PCB-1016	ND	0.50	1.9.— II							
HCH-alpha	ND	0.010	н							
PCB-1221	ND	0.50	11							
HCH-beta	ND	0.050	11							
PCB-1232	ND	0,50	И							
HCH-delta	ND	0.10	н							
PCB-1242	ND	0.50	0							
HCH-gamma (Lindane)	ND	0.20	11							
PCB-1248	ND	0.50	н							
Chlordane	ND	0.050	н						,	
PCB-1254	ND	0.50	"							
4,4′-DDD	ND	0.010	11							
PCB-1260	ND	0.50	н							
4,4′-DDE	ND	0.010	U.							
4,4'-DDT	ND	0.010	11							
Dieldrin	ND	0.020	N							
Endosulfan I	ND	0.020	н							
Endosulfan II	ND	0.050	n							
Endosulfan sulfate	ND	0.050	11							
Endrin	ND	0,10	n							
Endrin aldehyde	ND	0.050	н							
Heptachlor	ND	0.010	II							
Heptachlor epoxide	ND	0.010	н							
Toxaphene	ND	1.0	11							
PCB-1016	ND	0.50	11							
PCB-1221	ND	0.50	n							
PCB-1232	ND	0.50	9							
PCB-1242	ND	0.50	11							
PCB-1248	ND	0.50	11							
PCB-1254	ND	0.50	-11							
PCB-1260	ND	0.50	11							
Surrogate: Decachlorobiphenyl	0.187		"	0.250		74.8	42-147			
Surrogate: Tetrachloro-meta-xylene	0.333		"	0.250		133	42-147			
Surrogate: Decachlorobiphenyl	0.187		"	0.250		74.8	42-147			
Surrogate: Tetrachloro-meta-xylene	0.333		.11	0.250		133	42-147			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

26052 MERIT CIRCLE SUITE 105, LAGUNA HILLS, CALIFORNIA 92653 TELEPHONE: (949) 348-9389 FAX: (949) 348-9115 E-MAIL: SIERRALABS @ SIERRALABS.NET

AMEC	Project: San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	11/14/13 10:56

Organochlorine Pesticides and PCBs by EPA Method 608 - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3J3128 - EPA 3510C Sep	Funnel									
LCS (B3J3128-BS1)				Prepared:	11/04/13	Analyzed	: 11/05/13			
Aldrin	0.0889	0.075	μg/L	0.0800		111	80-120			
HCH-gamma (Lindane)	0.0752	0.20	11	0.0800		94.0	80-120			
PCB-1260	ND	0.50	11				80-120			
4,4´-DDT	0.203	0.010	н	0.200		102	80-120			
Dieldrin	0.201	0.020	н	0.200		100	80-120			
Heptachlor	0.0855	0.010	н	0.0800		107	80-120			
LCS (B3J3128-BS2)				Prepared:	11/04/13	Analyzed	: 11/05/13			
Aldrin	0.0843	0.075	μg/L	0.0800	-	105	80-120			
HCH-gamma (Lindane)	0.0953	0.20	11	0.0800		119	80-120			
PCB-1260	ND	0.50	11				80-120			
4,4'-DDT	0.221	0.010	11	0.200		110	80-120			
Dieldrin	0.226	0.020	n.	- 0.200		113	80-120			
Heptachlor	0.0748	0.010	0	0.0800		93.5	80-120			
LCS Dup (B3J3128-BSD1)				Prepared:	11/04/13	Analyzed	: 11/05/13			
Aldrin	0.0898	0.075	μg/L	0.0800		112	80-120	1.01	30	
HCH-gamma (Lindane)	0.0881	0.20	-11	0.0800		110	80-120	15.8	30	
PCB-1260	ND	0.50	11				80-120		30	
4,4´-DDT	0.183	0.010	0	0.200		91.5	80-120	10.4	30	
Dieldrin	0.165	0.020	11	0.200		82.5	80-120	19.7	30	
Heptachlor	0.0839	0.010	n	0.0800		105	80-120	1.89	30	

r

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	nber: [no	m Diego A one] nanda Arch)13)			Reporte 11/14/13	
Тс	otal Petroleum I	Iydrocarbo Sierra An				ality Co	ntrol			
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3K0541 - EPA 3510C Sep	Funnel						· · ·			
Blank (B3K0541-BLK1)				Prepared:	10/30/13	Analyzed	; 11/05/13			
Diesel Range Organics (C10-C24)	ND	0.050	mg/L							
Tet A	ND	0.050	н							

Dieser Hunge Ofgunies (Offer O21)	1115	0.000							
Jet-A	ND	0.050	н						
Oil Range Organics (C22-C36)	ND	0.050	н						
Surrogate: o-Terphenyl	0.0194		"	0.0250	77.6	60-175			
Surrogate: o-Terphenyl	0.0194		"	0.0250	77.6	60-175			
Surrogate: o-Terphenyl	0.0194		"	0.0250	77.6	60-175			
LCS (B3K0541-BS1)				Prepared: 10/3	30/13 Analyzed	: 11/05/13			
Diesel Range Organics (C10-C24)	0.462	0.050	mg/L	0.500	92.4	80-120			
Diesel Range Organics (C10-C24)	0.462	0.050	11	0.500	92.4	80-120			
Diesel Range Organics (C10-C24)	0.462	0.050	н	0.500	92.4	80-120			
LCS (B3K0541-BS2)				Prepared: 10/3	30/13 Analyzed	: 11/05/13			
Diesel Range Organics (C10-C24)	0.498	0.050	mg/L	0.500	99.6	80-120			
Diesel Range Organics (C10-C24)	0.498	0.050	н	0.500	99.6	80-120	·		
Diesel Range Organics (C10-C24)	0.498	0.050	11	0.500	99.6	80-120			
LCS Dup (B3K0541-BSD1)				Prepared: 10/3	30/13 Analyzed	: 11/05/13			
Diesel Range Organics (C10-C24)	0.460	0.050	mg/L	0.500	92.0	80-120	0.434	30	
Diesel Range Organics (C10-C24)	0.460	0.050	U U	0.500	92.0	80-120	0,434	30	
Diesel Range Organics (C10-C24)	0.460	0.050	9	0.500	92.0	80-120	0.434	30	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

26052 MERIT CIRCLE SUITE 105, LAGUNA HILLS, CALIFORNIA 92653 TELEPHONE: (949) 348-9389 FAX: (949) 348-9115 E-MAIL: SIERRALABS @ SIERRALABS.NET

AMEC	Project: San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	11/14/13 10:56

Polynuclear Aromatic Compounds by EPA Method 8310 - Quality Control

Sierra Analytical Labs, Inc.	
------------------------------	--

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B3K0739 - EPA 3510C Sej	o Funnel		····-						· · · · · · · · · · · · · · · · · · ·	
Blank (B3K0739-BLK1)				Prepared:	11/04/13	Analyzed	: 11/11/13			
Naphthalene	ND	0.500	μg/L							
Acenaphthylene	ND	1.00	11							
Acenaphthene	ND	1.00	11							
Fluorene	ND	0.100	11							
Phenanthrene	ND	0.100								
Anthracene	ND	0.0500	н							
Fluoranthene	ND	0.100	н							
Pyrene	ND	0.100	8							
Benzo (a) anthracene	ND	0.0500	н							
Chrysene	ND	0,100	н							
Benzo (b) fluoranthene	ND	0,100								
Benzo (k) fluoranthene	ND	0.0500	н							
Benzo (a) pyrene	ND	0.0500	u.							
Dibenzo(a,h)anthracene	ND	0.100	8							
Benzo (g,h,i) perylene	ND	0.100	9							
Indeno (1,2,3-cd) pyrene	ND	0.100	*1							
Surrogate: Decafluorobiphenyl	2.50		"	5.00		50.0	30-115			······
LCS (B3K0739-BS1)				Prepared:	11/04/13	Analyzed	: 11/11/13			
Naphthalene	0.555	0.500	μg/L	0.500		111	60-130			
Fluorene	0.502	0.100	· 11	0.500		100	60-130			
Pyrene	0.476	0.100	11	0,500		95.2	60-130			
Benzo (a) pyrene	0.490	0.0500	11	0.500		98.0	60-130			
Indeno (1,2,3-cd) pyrene	0.500	0.100	11	0.500		100	60-130			
Surrogate: Decafluorobiphenyl	4.93		n	5.00		98.6	30-115			
LCS (B3K0739-BS2)				Prepared:	11/04/13	Analyzed	: 11/11/13			
Naphthalene	0.575	0.500	μg/L	0.500		115	60-130			
Fluorene	0.573	0.100	я	0.500		115	60-130			
Pyrene	0.446	0.100	4	0.500		89.2	60-130			
Benzo (a) pyrene	0.487	0.0500	н	0.500		97.4	60-130			
Indeno (1,2,3-cd) pyrene	0.590	0.100	н	0.500		118	60-130			
Surrogate: Decafluorobiphenyl	4.29		"	5.00		85.8	30-115			
- · · · · ·										

AMEC	Project: San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	11/14/13 10:56

Polynuclear Aromatic Compounds by EPA Method 8310 - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3K0739 - EPA 3510C Sep	Funnel								-	
LCS Dup (B3K0739-BSD1)	÷			Prepared:	11/04/13	Analyzed	: 11/11/13			
Naphthalene	0.479	0.500	μg/L	0.500		95.8	60-130	14.7	30	
Fluorene	0.513	0.100	л	0.500		103	60-130	2.17	30	
Pyrene	0.492	0.100	9	0.500		98.4	60-130	3.31	30	
Benzo (a) pyrene	0.530	0.0500	н -	0.500		106	60-130	7.84	30	
Indeno (1,2,3-cd) pyrene	0.510	0.100	81	0,500		102	60-130	1.98	30	
Surrogate: Decafluorobiphenyl	3.89		"	5.00		77.8	30-115			

AMEC 9177 Sky	Park Court Suite A	Project: Project Number:	San Diego Airport (2013) [none]	Reported:
San Dieg	o CA, 92123	Project Manager:	Amanda Archenhold	11/14/13 10:56
		Notes and De	finitions	
D-41	Sample appears to be a mixture of	f fuel hydrocarbons. Oil Range	Hydrocarbons (C22-C36) reported.	
D-49	Sample appears to be a mixture of calibration.	f fuel hydrocarbons. Total Petr	oleum Hydrocarbons quantified using a l	Jet-A standard for
DET	Analyte DETECTED			
ND	Analyte NOT DETECTED at or above the	e reporting limit		
NR	Not Reported			
dry	Sample results reported on a dry weight b	asis		
RPD	Relative Percent Difference			

8100 Secura Way • Santa Fe Springs, CA 90670 Telephone (562) 347-2500 • Fax (562) 907-3610

November 7, 2013

Nick Forsyth Sierra Analytical Labs, Inc. 26052 Merit Circle, Suite 104 Laguna Hills, CA 92653

Re: PTS File No: 43708 Physical Properties Data 1310398

Dear Mr. Forsyth:

Please find enclosed report for Physical Properties analyses conducted upon the sample received from your 1310398 project. All analyses were performed by applicable ASTM, EPA, or API methodologies. An electronic version of the report has previously been sent to your attention via the internet. Please note that the sample was used in entirety during testing.

PTS Laboratories appreciates the opportunity to be of service. If you have any questions or require additional information, please contact Morgan Richards at (562) 347-2509.

Sincerely, PTS Laboratories, Inc.

Michael Mark Brady, P.G. District Manager

Encl.

PTS Laboratories

Project Name: Project Number:

N/A 1310398

TEST PROGRAM - 20131031

PTS File No: 43708 Client: Sierra Analytical Labs, Inc.

	ŀ				TOTALS:
	×	Water	0320	20131029	S-B06-12-102913 (1310398-12) 20131029
					Date Received: 20131031
	ASTM D4464				Method:
	Microsize	Type			
	Size:	Fluid	Time	Date	FLUID ID
	Particle				

Laboratory Test Program Notes Standard TAT for basic analysis is 5 business days.

Page 1 of 1

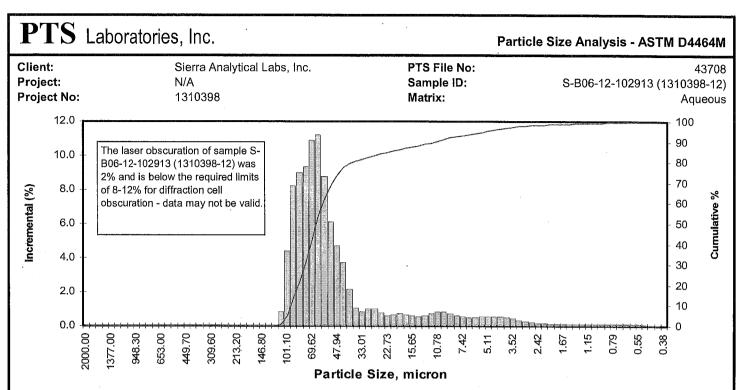
CLIENT CONFIDENTIAL

PTS Laboratories, Inc.

Sierra Analytical Labs, Inc. PTS File No: 43708

> PARTICLE SIZE SUMMARY (METHODOLOGY: ASTM D4464M)

11.114 %06 25.479 84% 45.942 75% CUMULATIVE PERCENT GREATER THAN 58.824 Distribution percent, microns 40% | 50% | 60% 65.391 71.281 82.139 25% 90.094 16% 96.991 10% 103.139 5% Median Grain Size, micron (1) 65.391 Aqueous Matrix N/A 1310398 S-B06-12-102913 (1310398-12) Sample ID PROJECT NAME: PROJECT NO:


5.179

95%

* The laser obscuration of sample S-B06-12-102913 (1310398-12) was 2%. The sample was below the required limits of 8-12% for diffraction cell obscuration - data may not be valid.

(1) Based on Trask Median

1 of 2

Particle	Particle Distribution		Particle	Particle Distribution		Particle	Particle Distribution	
Diameter,	Incremental	Cumulative	Diameter,	Incremental	Cumulative	Diameter,	Incremental	Cumulative
micron	percent	percent	micron	percent	percent	micron	percent	percent
2000.00	0.00	0.0	52.63	6.13	68.9	1.385	0.110	98.9
1822.00	0.00	0.0	47.94	4.74	73.6	1.261	0.110	99.0
1660.00	0.00	0.0	43.67	3.72	77.3	1.149	0.100	99.1
1512.00	0.00	0.0	39.78	2.19	79.5	1.047	0.098	99.2
1377.00	0.00	0.0	36.24	1.08	80.6	0.954	0.098	99.3
1255.00	0.00	0.0	33.01	0.86	81.5	0.869	0.100	99.4
1143.00	0.00	0.0	30.07	1.02	82.5	0.791	0.100	99.5
1041.00	0.00	0.0	27.39	1.02	83.5	0.721	0.100	99.6
948.30	0.00	0.0	24.95	0.80	84.3	0.657	0.100	99.7
863.90	0.00	0.0	22.73	0.63	84.9	0.598	0,100	99.8
786.90	0.00	0.0	20.71	0,66	85.6	0.545	0.092	99.9
716.90	0.00	0.0	18.86	0.73	86.3	0.496	0.078	100.0
653.00	0.00	0.0	17.18	0.68	87.0	0.452	0.060	100.0
594,90	0.00	0.0	15.65	0.59	87.6	0.412	0.037	100.1
541.90	0.00	0.0	14.26	0.56	88.1	0.375	0.020	100.1
493.60	0.00	0.0	12.99	0.63	88.8	TOTALS:	100.09	100.1
449.70	0.00	0.0	11.83	0,75	89.5	the short of the second se		
409.60	0.00	0.0	10.78	0,83	90.4	Measure	Trask	Inman
373.10	0.00	0.0	9.82	0.82	91.2	Median, mm	0.0654	0.0654
339,90	0.00	0.0	8.94	0.74	91.9	Median, micron	65.391	65.391
309.60	0.00	0.0	8.15	0.63	92.5	Mean, mm	0.0640	0.0479
282.10	0.00	0.0	7.42	0.54	93.1	Mean, micron	64.041	47.911
256.90	0.00	0.0	6.76	0.50	93.6	Sorting	1.3371	0.911
234.10	0.00	0.0	6.16	0.50	94.1	Skewness	0.9394	0.493
213.20	0.00	0.0	5.61	0.53	94.6	Kurtosis	0.2107	1.369
194.20	0.00	0.0	5.11	0.56	95,2			
176.90	0.00	0.0	4.66	0.57	95.7	Cumulative Percent greater than		
161.20	0.00	0.0	4.24	0.54	96.3	Distribution	Distribution Particle Size	
146.80	0.00	0.0	3.86	0.49	96.8	percent	Micron	Millimeters
133.70	0.00	0.0	3.52	0.42	97.2	5	103.139	0.1031
121.80	0.03	0.0	3.21	0.34	97.5	10	96,991	0.0970
111.00	0,82	0.8	2.92	0.26	97.8	16	90.094	0.0901
101.10	4.38 `	5,2	2.66	0.20	98.0	25	82.139	0.0821
92.10	8.25	13.5	2.42	0.16	98.2	40	71.281	0.0713
83.90	9.00	22.5	2.21	0.14	98.3	50	65.391	0,0654
76.43	9.36	31.8	2.01	0.13	98.4	60	58.824	0.0588
69.62	10.90	42.7	1.83	0.12	98.5	75	45.942	0.0459
63,42	11.20	53.9	1.67	0.12	98.7	84	25,479	0.0255
57,77	8.80	62.7	1.52	0.12	98.8	90	11.114	0.0111
@ DTG I ala						95	5.179	0,0052

© PTS Laboratories, Inc.

Phone: (562) 907-3607

Fax: (562) 907-3611

S J E R R A		Sierra Ana	NTRACT ORDER alytical Labs, Inc. roiect #: 1310398	4 3708 Comments
SENDING LABORATORY: Sierra Analytical Labs, Inc. 26052 Merit Circle, Suite 104 Laguna Hills, CA 92653 Phone: (949) 348-9389. Fax: (949) 348-9115 Laboratory Contact: Nick Forsyth		Time Requested:	Nommi 24 Hour 18 Hour 22 Hour HDay 5 Day	RECEIVING LABORATORY: PTS Laboratories 8100 Secura Way Santa Fe Springs, CA 90670 Phone : (562) 907-3607 Fax: (562) 907-3610
Analysis	Expires	Sampled:	Laboratory ID	Comments
Sample ID: S-B06-12-102913 (1310398-12)	Liquid	10/29/13 03:20		
Full Particle Sizing Containers Supplied: 1L Amber (A)	04/27/14	03:20		

. .

\$

Special Instructions :		Initiat ■ Sample Set ■ Property Babeled ■ Guittled TE	18 MP (CO) <u>392 °F</u>
		Appropriate Container . D. Preservariv	es - Venified By
Relinquished By	10/31/15 11/50 Date / Time	Received By	10/31/13 11:38 Date/Fime
Relinquished By	Date / Time	Received By	Date / Time
Relinquished By	Date / Time	Received By	Date / Time Page I of 2

Weck Laboratories, Inc.

Analytical Laboratory Service - Since 1964

Certificate of Analysis

 Report Date:
 11/06/13 12:34

 Received Date:
 10/31/13 11:50

 Turnaround Time:
 Normal

Phones: (949) 348-9389 Fax: (949) 348-9115

P.O. #:

Attn: Nick Forsyth

Client: Sierra Analytical Labs, Inc. 26052 Merit Circle, Suite 104 Laguna Hills, CA 92653

Dear Nick Forsyth :

Enclosed are the results of analyses for samples received 10/31/2013 with the Chain of Custody document. The samples were received in good condition, at 4.2 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Lab Sample ID: 3J31035-01 Sampled by: Client								Matrix: Water		
Analyte	Result	MDL	MRL	Units	Dil	Method	Prepared	Analyzed	Batch	Qualifier
Ethylene glycol	ND		10	mg/l	1	EPA 8015B	11/4/13	11/4/13 18:08	W3K0115	
Propylene glycol	ND		20	mg/l	1	EPA 8015B	11/4/13	11/4/13 18:08	W3K0115	
Lab Sample ID: 3J31035-02	Sample i	D: ;	S-B06-12-1	02913 (131()398-12)				Ma	trix: Water
Sampled by: Client	Sampled	: 10/29/	13 03:20							
Analyte	Result	MDL	MRL	Units	Dil	Method	Prepared	Analyzed	Batch	Qualifier
Ethylene glycol	ND		10	mg/l	1	EPA 8015B	11/4/13	11/4/13 18:37	W3K0115	
Propylene glycol	ND		20	mg/l	1	EPA 8015B	11/4/13	11/4/13 18:37	W3K0115	

Weck Laboratories, Inc.

Page 2 of 3

Analytical Laboratory Service - Since 1964

Certificate of Analysis

Quality Control Section

Glycols by EPA Method 8015B - Quality Control

Batch W3K0115 - EPA 8015B

Blank (W3K0115-BLK1)				1	Prepared: 11,	/04/13 Ana	alyzed: 11/04	/13 15:19	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC	RPD	RPD Limit
Ethylene glycol		ND		mg/l					
Propylene glycol		ND		mg/l					
LCS (W3K0115-BS1)					Prepared: 11,	/04/13 Ana	alyzed: 11/04	/13 15:48	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Ethylene glycol		104		mg/l	100	104	46-129		
Matrix Spike (W3K0115-MS1)	So	ource: 3J3103!	5-01		Prepared: 11	/04/13 An	alyzed: 11/04	4/13 16:16	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Ethylene glycol		120		mg/l	100	111	57-127		
Matrix Spike Dup (W3K0115-MSD1)	Se	ource: 3J3103!	5-01		Prepared: 11	/04/13 An	alyzed: 11/04	4/13 16:44	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Ethylene glycol	8 30	120		mg/l	100	112	57-127	0.6	25

Weck Laboratories, Inc.

Analytical Laboratory Service - Since 1964

Certificate of Analysis

Notes:

The Chain of Custody document is part of the analytical report.

Any remaining sample(s) for testing will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

An Absence of Total Coliform meets the drinking water standards as established by the State of California Department of Health Services. The Reporting Limit (RL) is referenced as laboratory's Practical Quantitation Limit (PQL). For Potable water analysis, the Reporting Limit (RL) is referenced as Detection Limit for reporting purposes (DLRs) defined by EPA.

If sample collected by Weck Laboratories, sampled in accordance to lab SOP MIS002

Authorized Signature Contact: Kim G Tu (Project Manager)

ELAP # 1132 LACSD # 10143 NELAC # 04229CA

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Weck Laboratories certifies that the test results meet all requirements of NELAC unless noted in the Case Narrative. This analytical report must be reproduced in its entirety.

Flags for Data Qualifiers:

ND	NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL).
Sub	Subcontracted analysis, original report enclosed.
DL	Method Detection Limit
RL	Method Reporting Limit
MDA	Minimum Detectable Activity
NR	Not Reportable

Page 3 of 3

i . .

. .

i

Third Storm Event

18 December 2013

Amanda Archenhold AMEC 9177 Sky Park Court Suite A San Diego, CA 92123

RE:San Diego Airport (2013)

Work Order No.: 1311263

Attached are the results of the analyses for samples received by the laboratory on 11/21/13 13:26.

The samples were received by Sierra Analytical Labs, Inc. with a chain of custody record attached or completed at the submittal of the samples.

The analyses were performed according to the prescribed method as outlined by EPA, Standard Methods, and A.S.T.M.

The remaining portions of the samples will be disposed of within 30 days from the date of this report. If you require any additional retaining time, please advise us.

Sincerely,

and R. Josyth

Richard K. Forsyth

Laboratory Director

Sierra Analytical Labs, Inc. is certified by the California Department of Health Services (DOHS), Environmental Laboratory Accredidation Program (ELAP) No. 2320.

S I E R R A ANALYTICAE

AMEC	Project:	San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number:	Û Î ()	Reported:
San Diego CA, 92123	Project Manager:	Amanda Archenhold	12/18/13 10:47

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
C-B07-6-112113-BLK	1311263-01	Liquid	11/21/13 05:40	11/21/13 13:26
C-B01-1A-112113-DUP	1311263-02	Liquid	11/21/13 05:20	11/21/13 13:26
C-B01-1A-112113	1311263-03	Liquid	11/21/13 05:20	11/21/13 13:26
C-B05-4-112113	1311263-04	Liquid	11/21/13 05:30	11/21/13 13:26
S-B06-12-112113	1311263-05	Liquid	11/21/13 05:51	11/21/13 13:26
C-B07-6-112113	1311263-06	Liquid	11/21/13 05:40	11/21/13 13:26

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

26052 MERIT CIRCLE SUITE 105, LAGUNA HILLS, CALIFORNIA 92653 TELEPHONE: (949) 348-9389 Fax: (949) 348-9115 E-MAIL: SIERRALABS @ SIERRALABS.NET

Total Suspended Solids

AMEC		San Diego Airport (2013)	Described
9177 Sky Park Court Suite A San Diego CA, 92123	Project Number: Project Manager:	Amanda Archenhold	Reported: 12/18/13 10:47
San Diego CA, 92123	Project Manager: Conventional Chemistry Param		

		Sierra A	nalytical	Labs, I	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B07-6-112113-BLK (1311263-01) Liqui	d Sampled:	11/21/13 05	:40 Recei	ved: 11/2	1/13 13:26				-
Ammonia as N	ND	0.100	mg/L	1	B3K2715	11/21/13	11/21/13 17:24	SM 4500-NH3	
Biochemical Oxygen Demand	ND	2.00	n	n	11	0	11/26/13 17:24	· EPA 405.1	
Chemical Oxygen Demand	ND	0.100	н.	11	U.	н	11/21/13 17:24	EPA 410.4	
Specific Conductance (EC)	1.18	0.100	µmhos/cm	н	н	.0	11	EPA 120.1	
Total Hardness	ND	0.400	mg/L	11	0	н	11	SM 2340 C	
Methylene Blue Active Substances	ND	0.0500	11	11	71		0	EPA 425.1	
pH	6.88	0.100	pH Units	"	Ш	n	н	EPA 150.1	
Total Suspended Solids	ND	1.00	mg/L	n	н	u.	н	EPA 160.2	
C-B01-1A-112113-DUP (1311263-02) Liqu	uid Sampleo	d: 11/21/13 ()5:20 Rec	eived: 11/	/21/13 13:2	6			
Ammonia as N	0.350	0.100	mg/L	1	B3K2715	11/21/13	11/21/13 17:24	SM 4500-NH3	
Biochemical Oxygen Demand	2.40	2.00	11	н	у	0	11/26/13 17:24	EPA 405.1	
Chemical Oxygen Demand	13.0	0.100	n.		11	U	11/21/13 17:24	EPA 410.4	
Specific Conductance (EC)	184	0.100	µmhos/cm	9	11	н	n	EPA 120.1	
Total Hardness	61.6	0.400	mg/L	11	n	н	11	SM 2340 C	
Hexane Extractable Material (HEM)	ND	2.00	н	-11	н	n	11	EPA 1664	
Methylene Blue Active Substances	ND	0.0500	н	н	н	н	11	EPA 425.1	
pН	7.06	0.100	pH Units	н	11	н	n	EPA 150.1	
Total Suspended Solids	ND	1.00	mg/L	н	11	11		EPA 160.2	
C-B01-1A-112113 (1311263-03) Liquid	Sampled: 11/2	21/13 05:20	Received:	11/21/13	13:26				
Ammonia as N	0.320	0.100	mg/L	1	B3K2715	11/21/13	11/21/13 17:24	SM 4500-NH3	
Biochemical Oxygen Demand	2.10	2.00	°9	n	90 10	11	11/26/13 17:24	EPA 405.1	
Chemical Oxygen Demand	12.0	0.100	17	u.	9	11	11/21/13 17:24	EPA 410.4	
Specific Conductance (EC)	186	0.100	µmhos/cm		11	17	11	EPA 120.1	
Total Hardness	63.2	0.400	mg/L	ж	9	11	11	SM 2340 C	
Hexane Extractable Material (HEM)	ND	2.00	0 · · · · ·		11	17	. "	EPA 1664	
Methylene Blue Active Substances	ND	0.0500	н	11	-11	17	-11	EPA 425.1	
рН	7.05	0.100	pH Units	9	n	н	n	EPA 150.1	
			-						

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ND

1.00

mg/L

26052 Merit Circle Suite 105, Laguna Hills, California 92653 Telephone: (949) 348-9389 Fax: (949) 348-9115 E-Mail: sierralabs @ sierralabs.net EPA 160.2

0177 Class Davis Classes Carles A	Project: San Diego Airport (2013)	Descuted
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	12/18/13 10:47

Conventional Chemistry Parameters by APHA/EPA Methods

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit		Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B07-6-112113 (1311263-06) Liquid	Sampled: 11/21/	13 05:40	Received: 1	1/21/13 1	3:26				
Ammonia as N	3.45	0,100	mg/L	1	B3K2715	11/21/13	11/21/13 17:24	SM 4500-NH3	
Biochemical Oxygen Demand	21.8	2.00	9	н	0	н	11/26/13 17:24	EPA 405.1	
Chemical Oxygen Demand	195	0.100	н	N-	0	н	11/21/13 17:24	EPA 410,4	
Specific Conductance (EC)	257	0.100	µmhos/cm	н	н	н	н	EPA 120.1	
Total Hardness	76.0	0.400	mg/L	u.	н	0	II.	SM 2340 C	
Hexane Extractable Material (HEM)	' ND	2.00	n	9.	и	11	н	EPA 1664	
Methylene Blue Active Substances	0.190	0.0500		.11	n	u.	н	EPA 425.1	
pH	6.65	0.100	pH Units	n.	11	л	л	EPA 150.1	
Total Suspended Solids	26.0	1.00	mg/L	н	n	н	, H	EPA 160.2	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

26052 MERIT CIRCLE SUITE 105, LAGUNA HILLS, CALIFORNIA 92653 TELEPHONE: (949) 348-9389 Fax: (949) 348-9115 E-MAIL: SIERRALABS @ SIERRALABS.NET

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nur Project Mar	mber: [no	ne]	airport (20 enhold	13)		Reported 12/18/13 1	
	M	etals by EP	A 200 S	Series M	ethods				
		Sierra An	alytica	l Labs, I	nc.				
Analyte	Result	Reporting Limit	' Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B07-6-112113-BLK (1311263-01) Liquid	Sampled:	11/21/13 05:	40 Rece	ived: 11/2	1/13 13:26				
Silver	ND	1.5	μg/L	1	B3K2207	11/22/13	11/23/13 14:42	EPA 200.8	
Aluminum	ND	25	н	0		II.	н	н	
Arsenic	ND	3.0	н	11	11	11	II.	.11	
Cadmium	ND	2.0	н	11	.11	11	11	-11	
Chromium	ND	3.0	11	n	н	н	H.	11	
Hexavalent Chromium	ND	0.0020	mg/L	H	B3K2209	11/22/13	11/26/13 19:41	EPA 218.6	
Copper	ND	1.0	μg/L	11	B3K2207	11/22/13	11/23/13 14:42		
lron	ND	0.025	mg/L	"	10	11	н	.11	
Mercury	ND	0,00030	n	"	B3K2224	11/22/13	11/25/13 18:29	EPA 245.1	
Nickel	ND	5.0	μg/L	9.	B3K2207	11/22/13	11/23/13 14:42	EPA 200.8	
Lead	ND	1.0	11	11	41	17	н	н	
Zinc	ND	1.0	n	11	11	"	м	11	
C-B01-1A-112113-DUP (1311263-02) Liqui	d Sample	d: 11/21/13 0	5:20 Re	ceived: 11/	21/13 13:2	6			
Silver	ND	1.5	μg/L	1	B3K2207	11/22/13	11/23/13 14:42	EPA 200.8	
Aluminum	92	25	11	н	0	11	11	n	
Arsenic	ND	3.0	"	н	н	н.	11	п	
Cadmium	ND	2.0		н	н	н	11	.11	
Chromium	ND	3.0	11		н	н	17	11	
Hexavalent Chromium	ND	0.0020	mg/L		B3K2209	11/22/13	11/26/13 19:41	EPA 218.6	
Copper	3.7	1.0	μg/L		B3K2207	11/22/13	11/23/13 14:42	EPA 200.8	
Iron	0.066	0.025	mg/L	u	u.	н	н	11	
Mercury	ND	0.00030	n	"	B3K2224	11/22/13	11/25/13 18:29	EPA 245.1	
Nickel	ND	5.0	μg/L		B3K2207	11/22/13	11/23/13 14:42	EPA 200.8	
Lead	ND	1.0		"	u.	н	11	11	
Zinc	53	1.0	н	-11	н	11	U U	н	

	San Diego CA, 92123 Project Manager: Amanda Archenhold 12/18/13 10:47 Metals by EPA 200 Series Methods									
91/7 Sky Park Court Suite A Troject Number, [none]										
9177 Sky Park Court Suite A Project Number: [none] Rep	orted:									

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B01-1A-112113 (1311263-03) Liquid	Sampled: 11/2	1/13 05:20	Received	l: 11/21/13	13:26		-		
Silver	ND	1.5	μg/L	1	B3K2207	11/22/13	11/23/13 14:42	EPA 200.8	
Aluminum	· 90	25	10	n	41	II.	11	н	
Arsenic	ND	3.0	-91	м	И	И	н	н	
Cadmium	ND	2.0	н	п	н	U	н	91	
Chromium	ND	3.0	и	11	11	"	11	11	
Hexavalent Chromium	ND	0.0020	mg/L	11	B3K2209	11/22/13	11/26/13 19:41	EPA 218.6	
Copper	4.7	1.0	μg/L	Ņ	B3K2207	11/22/13	11/23/13 14:42	EPA 200.8	
Iron	0.085	0.025	mg/L	н	н	н	11	n	
Mercury	ND	0.00030	н	н	B3K2224	11/22/13	11/25/13 18:29	EPA 245.1	
Nickel	ND	5.0	μg/L	n.	B3K2207	11/22/13	11/23/13 14:42	EPA 200.8	
Lead	ND	1.0		н	11	н	11	.0	
Zinc	46	1.0	11	и	11	"	11	n	

C-B07-6-112113 (1311263-06) Liquid Sampled: 11/21/13 05:40 Received: 11/21/13 13:26

Aluminum	180	25	μg/L	1	B3K2207	11/22/13	11/23/13 14:42	EPA 200.8
Copper	190	1.0	11	н	n	н	н	И
Iron	3.3	0.025	mg/L	11	11	11	н	n
Lead	ND	1.0	μg/L	11	11.	11-	н	н
Zinc	700	1.0		11	н.	н	н	U .

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

26052 Merit Circle Suite 105, Laguna Hills, California 92653 Telephone: (949) 348-9389 Fax: (949) 348-9115 E-Mail: sierralabs @ sierralabs.net

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nr	unber: [no		Arport (20	13)		Reported 12/18/13 1	
	Metals (Dissolved)				ods		14/10/10 1	
	v	Sierra A	·						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
C-B01-1A-112113-DUP (1311263-02)	Liquid Sample	d: 11/21/13 0	5:20 Red	ceived: 11/	21/13 13:2	6			
Silver	ND	1.5	μg/L	1	B3K2208	11/22/13	11/23/13 14:32	EPA 200.8	
Arsenic	ND	3,0	n		н	н.	н	"	
Cadmium	ND	2.0	n	"	н	н	н	11	
Chromium	ND	3.0	н	11	н.	м	- 11	11	
Hexavalent Chromium	ND	0.0020	mg/L	"	B3K2210	11/22/13	11/27/13 11:06	EPA 218.6	
Copper	3.5	1.0	μg/L	11	B3K2208	11/22/13	11/23/13 14:32	EPA 200.8	
Mercury	ND	0.00073	mg/L	11	B3K2225	11/22/13	11/25/13 18:34	EPA 245.1	
Nickel	ND	5.0	μg/L	11	B3K2208	11/22/13	11/23/13 14:32	EPA 200.8	
Lead	, ND	2.0	14	н	11	"	11	It	
Zine	18	1.0	н	н	n	н	H.	0	
C-B01-1A-112113 (1311263-03) Liqu	id Sampled: 11/	21/13 05:20	Received	l: 11/21/13	13:26				
Silver	ND	1.5	μg/L	1	B3K2208	11/22/13	11/23/13 14:32	EPA 200.8	
Arsenic	ND	3.0	н	н	11	н	и	0	
Cadmium	ND	2.0	н	н	11	н	n	P	
Chromium	ND	3.0	н	н	14	н	11	11	
Hexavalent Chromium	ND	0.0020	mg/L		B3K2210	11/22/13	11/27/13 11:06	EPA 218.6	
Copper	4.0	1.0	μg/L	н	B3K2208	11/22/13	11/23/13 14:32	EPA 200.8	
Mercury	ND	0.00073	mg/L	н	B3K2225	11/22/13	11/25/13 18:34	EPA 245.1	
Nickel	ND	5.0	μg/L	9	B3K2208	11/22/13	11/23/13 14:32	EPA 200.8	
Lead	ND	2.0	н	н	N	11	11	II.	
Zinc	14	1.0	н	u	п	и	11.	II.	
C-B07-6-112113 (1311263-06) Liquid	Sampled: 11/21	/13 05:40 H	Received:	11/21/13 1	3:26				
Copper	43	1.0	μg/L	1	B3K2208	11/22/13	11/23/13 14:32	EPA 200.8	
Zinc	210	1.0	"	н	11	u.	0	11	

SIERRA ANALYTICAL

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Pr Project Nu Project Mar	mber: [no	me]	Airport (20 Menhold	13)		Reported: 12/18/13 10:47		
	Tri	valent Chi	omium	by Calc	ulation			, , ,		
		Sierra Ar	nalytica	l Labs, I	nc.					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
C-B07-6-112113-BLK (1311263-01) Liqui	d Sampled:	11/21/13 05:	40 Rece	vived: 11/2	1/13 13:26	,				
Trivalent Chromium	ND	0.010	mg/L	1	B3K2211	11/22/13	11/26/13 19:44	1 Calculation		
C-B01-1A-112113-DUP (1311263-02) Liq	uid Sample	d: 11/21/13 0	5:20 Re	ceived: 11	/21/13 13:2	6				
Trivalent Chromium	ND	0.010	mg/L	1 '	B3K2211	11/22/13	11/26/13 19:44	4 Calculation		
C-B01-1A-112113 (1311263-03) Liquid	Sampled: 11/	21/13 05:20	Received	1: 11/21/13	13:26					
Trivalent Chromium	ND	0.010	mg/L	. 1	B3K2211	11/22/13	11/26/13 19:44	4 Calculation		

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu Project Mar	mber: [no nager: An	nanda Arch	Reported: 12/18/13 10:47				
	Trivalent	Chromius Sierra An	•			ved)			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B01-1A-112113-DUP (1311263-02) Li	quid Sampled	: 11/21/13 0	5:20 Re	ceived: 11/	/21/13 13:2	6			
Trivalent Chromium	ND	0.010	mg/L	1	B3K2212	11/22/13	11/27/13 11:0	9 Calculation	
C-B01-1A-112113 (1311263-03) Liquid	Sampled: 11/2	1/13 05:20	Received	l: 11/21/13	13:26				
Trivalent Chromium	ND	0.010	mg/L	1	B3K2212	11/22/13	11/27/13 11:0	9 Calculation	

AMEC	Project:	San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number:	[none]	Reported:
San Diego CA, 92123	Project Manager:	Amanda Archenhold	12/18/13 10:47

Organochlorine Pesticides and PCBs by EPA Method 608

		Sierra An	alytica	l Labs, I	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B01-1A-112113-DUP (1311263-02) Liquid	Sampled	I: 11/21/13 05	5:20 Re	ceived: 11/	/21/13 13:2	6			
Aldrin	ND	0.075	μg/L	1	B3L0227	11/27/13	12/02/13 15:00	EPA 608	
HCH-alpha	ND	0.010	л	м	N.	11	n	н	
HCH-beta	ND	0.050	н	11	11	м	и	н	
HCH-delta	ND	0.10	н	11	n	н	IT	11	
HCH-gamma (Lindane)	ND	0.20	11	n	н	11	11	н.	
Chlordane	ND	0.050	п	н	н	11	н		
4,4′-DDD	ND	0.010	н	u.	11	н	n	u.	
4,4'-DDE	ND	0.010	u.	11	11	н	n	11	
4,4'-DDT	ND	0.010	11	н	н	11	n	н	
Dieldrin	ND	0.020	н	н	u.	11	n	n	
Endosulfan I	ND	0.020	n	u.	11	н	́ и	TT.	
Endosulfan II	ND	0.050		9	п	н	u		
Endosulfan sulfate	ND	0.050	11	н	н	л	9	и	
Endrin	ND	0.10	H	н	н	11	n	н	
Endrin aldehyde	ND	0.050	n	11	11	н	8	U	
Heptachlor	ND	0.010	11	11.	п	н	11	11	
Heptachlor epoxide	ND	0.010	0	N	и	II	н	н	
Toxaphene	ND	1.0	и	и	11	9	н	H.	
PCB-1016	ND	0.50	11	11	11	в	U.	u.	
PCB-1221	ND	0.50	11	11	U	IJ		n	
PCB-1232	ND	0.50	н.	н	н	9	л	н	
PCB-1242	ND	0.50	н	н	u.	11	п	н	
PCB-1248	ND	0.50		-11	11	н	н	н	
PCB-1254	ND	0.50	9	11	n	н	н	9	
PCB-1260	ND	0.50	n	п	н	н	-11	0	
Surrogate: Decachlorobiphenyl		74.4 %	42	-147	л	11	"	"	
Surrogate: Tetrachloro-meta-xylene		70.4 %	42	-147	"	"	"	"	

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	roject: San umber: [nor nager: Ama	ie]		13)		Reported 12/18/13 1	
0	rganochlorir	ne Pesticid	les and P	CBs by	EPA Mo	ethod 60	8		
		Sierra A	nalytical	Labs, I	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B01-1A-112113 (1311263-03) Liquid	Sampled: 11/2	21/13 05:20	Received:	11/21/13	13:26				
Aldrin	ND	0.075	μg/L	· 1	B3L0227	11/27/13	12/02/13 15:00	EPA 608	
HCH-alpha	ND	0,010	н		17	11	11	н	
HCH-beta	ND	0.050	н	11	11		u.	n	
HCH-delta	ND	0.10	H.	0	U.	н		н	
HCH-gamma (Lindane)	ND	0.20	H	н	н	н	11	н	
Chlordane	ND	0.050	"	н	N	н	н	н	
4,4´-DDD	ND	0.010	0	н.	. "	n	н	н	
4,4´-DDE	ND	0.010	11	n	н	н	н	н	
4,4´-DDT	ND	0.010	11	н	n	8	n	n	
Dieldrin	ND	0.020	U.	н	н	н	n	-u	
Endosulfan I	ND	0.020	μ	н	H.		н	-0	
Endosulfan II	ND	0.050	н	u.	11	и.			
Endosulfan sulfate	ND	0,050	и	11	11	11		-0	
Endrin	ND	0.10	п		"	11	9	n	
Endrin aldehyde	ND	0.050	н	**	11	"	10	11	
Heptachlor	ND	0.010	n	9	11	11	н	-11	
Heptachlor epoxide	ND	0.010	н	9	11	11	u	II.	
Toxaphene	ND	1.0	н	"	11	11	11	n	
PCB-1016	ND	0.50	н	*	n.	11	ч	0	
PCB-1221	ND	0.50	н	91 ⁻	W.	11	ч	.0	
PCB-1232	ND	0.50	н		11	11	n	n.	
PCB-1242	ND	0.50	н	0	11	я	н.	U.	
PCB-1248	ND	0.50	n		ŧ	н	н	u.	
PCB-1254	ND	0.50	n		11		п	u	
PCB-1260	ND	0.50	н		Ĥ	н	н	41	
Surrogate: Decachlorobiphenyl		66.4 %	42-1	47	n	"	"	"	
Surrogate: Tetrachloro-meta-xylene		57.2 %	42-1		"	"	"	n	

	····		······································
AMEC	Project:	San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number:	[none]	Reported:
San Diego CA, 92123	Project Manager:	Amanda Archenhold	12/18/13 10:47
		A DOD - he EDA Mathad (00	

Organochlorine Pesticides and PCBs by EPA Method 608

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B05-4-112113 (1311263-04) Liquid	Sampled: 11/21/	13 05:30 R	eceived:	11/21/13 1	3:26				
Aldrin	ND	0.075	μg/L	1	B3L0227	11/27/13	12/02/13 15:00	EPA 608	·
HCH-alpha	ND	0.010	я	11	-II	R.	и	Ц	
HCH-beta	ND	0.050	н	н	9		31	н	
HCH-delta	ND	0.10	н	н	. 11	11	п	II.	*
HCH-gamma (Lindane)	ND	0.20	11	U.	н	н	n	"	-
Chlordane	ND	0.050	0	9	11	11	11	11	
4,4′-DDD	ND	0.010	п	n	. "	U	11	"	
4,4′-DDE	ND	0.010	н	"	11	n	U.	II.	
4,4'-DDT	ND	0.010	H.	u	н	н	n	U.	
Dieldrin	ND	0.020	11	11 ¹	0	11	л	n	
Endosulfan I	ND	0.020	11	U II	0	11	л	н	
Endosulfan II	ND	0.050	н	8	11	я	.u	н	
Endosulfan sulfate	ND	0.050	n.	н	н	н		11	
Endrin	ND	0.10	11	11	n	н	н	н	
Endrin aldehyde	ND	0.050	м			U.	11	н	
Heptachlor	ND	0.010	н	' н	ti	11	0	н	
Heptachlor epoxide	ND	0.010		11	н	11	-H	11	
Toxaphene	ND	1.0	н		н	и	11	11	
PCB-1016	ND	0.50	н	N-	9	11	U	н	
PCB-1221	ND	0.50	11	н	10	11	11	н	
PCB-1232	ND	0.50	11	11 °	n	я	ų	н	
PCB-1242	ND	0.50	и	. 11	н	п	11	II.	
PCB-1248	ND	0.50	н	н	11	н	н	U U	
PCB-1254	ND	0.50	U.	М	11	41	н	11	
PCB-1260	ND	0.50	"	н	11	n	n	Ш	
Surrogate: Decachlorobiphenyl		56.4 %	42	-147	11	"	п	11	
Surrogate: Tetrachloro-meta-xylene		58.8 %	42	-147	"	11	"	"	

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Pr Project Nu Project Mai	mber: [no	ne]	irport (20 nenhold	13)		Reported 12/18/13 1	
(Organochlorin								
		Sierra Ai	ialytica	I Labs, I	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S-B06-12-112113 (1311263-05) Liquid	Sampled: 11/21	/13 05:51 1	Received:	11/21/13	13:26				
Aldrin	ND	0.075	μg/L	1	B3L0227	11/27/13	12/02/13 15:00	EPA 608	
HCH-alpha	ND	0.010	11	"	11	-0	н	n	
HCH-beta	ND	0.050			1Ĕ	м	н	n	
HCH-delta	ND	0.10	11	11	ų	н		n	
HCH-gamma (Lindane)	ND	0.20	н	"	0	н	11	н	
Chlordane	ND	0.050	н	11	n	н	N.	н	
4,4´-DDD	ND	0.010	н .	n	н	н	л	"	
4,4´-DDE	ND	0.010		н	n	H.	11	и	
4,4´-DDT	ND	0.010	н	11	н	11	11	11	
Dieldrin	ND	0.020		н	11	u.	AI.	н	
Endosulfan I	ND	0.020	-11	н	н	11	11	Π.	
Endosulfan II	ND	0.050	"	9	11	11	NI .	н	
Endosulfan sulfate	ND	0.050	.11	н	n.	11	41	н	
Endrin	ND	0.10	ų	11	n		11	н	
Endrin aldehyde	ND	0.050	11	11	u,	0	И	л	
Heptachlor	ND	0.010	11	н	H.	11	.91	n	
Heptachlor epoxide	ND	0.010	u .	.0	**	11	91	n	
Toxaphene	ND	1.0	н	н	19	Ŷ	91	.n	
PCB-1016	ND	0.50	н	н	11	0	11	н	
PCB-1221	ND	0.50	н	99	9	"	11	н	
PCB-1232	ND	0.50	н	11	9	"	91	н	
PCB-1242	ND	0.50	м	11	14	"	11	н	
PCB-1248	ND	0.50	н	.9	11	11	ч		
PCB-1254	ND	0.50	н	11	-11	11	u.		
PCB-1260	ND	0.50	н	"	9	"	41	н	
Surrogate: Decachlorobiphenyl		52.8 %	42-	147	11	"	11:	"	
Surrogate: Tetrachloro-meta-xylene		63.2 %	42-	147	"	"	<i>n</i> :	"	

Sky Park Court Suite AProject Number: [none]Diego CA, 92123Project Manager: Amanda Archenhold	12/18/13 10:47
Sky Park Court Suite A Project Number: [none]	
	Reported:
BC Project: San Diego Airport (2013)	

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B07-6-112113 (1311263-06) Liquid	Sampled: 11/21/	13 05:40 R	eeeived:	11/21/13 1	3:26				
PCB-1016	ND	0.50	μg/L	1	B3L0227	11/27/13	12/02/13 15:00	EPA 608	
PCB-1221	ND	0.50	. 11	н	n	н	11	11	
PCB-1232	ND	0.50	n	н	п	н	n -	. 11	
PCB-1242	ND	0.50	н	u	N.	"	Ħ	н	
PCB-1248	ND	0.50	I	11	11	11	п	II.	
PCB-1254	ND	0.50	.0	0	н	н	11	17	
PCB-1260	ND	0.50	ú	м.,	n	n	11	11	
Surrogate: Decachlorobiphenyl		53.2 %	42-	147	11	H	п	"	
Surrogate: Tetrachloro-meta-xylene		57.6%	42-	147	"	"	"	"	

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	oject: San I mber: [none ager: Aman]		13)		Reported 12/18/13 10	
	Total Petr	oleum Hyd	lrocarbon	s (TP	H) by GO	C/FID			
		Sierra An	alytical L	abs, I	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
C-B01-1A-112113-DUP (1311263-02) Li	iquid Sample	d: 11/21/13 0	5:20 Recei	ved: 11/	21/13 13:2	6		· · · · · · · · · · · · · · · · · · ·	
Diesel Range Organics (C10-C24)	ND	0.050	mg/L	1	B3K2703	11/25/13	11/27/13 16:2	5 EPA 8015B	
Surrogate: o-Terphenyl Jet-A	ND	80.4 % 0.050	<i>60-17</i> . "	5	11 11	<i>11</i> 11	<i>II</i> II	H H	
Surrogate: o-Terphenyl Oil Range Organics (C22-C36)	ND	80.4 % 0.050	<i>60-17</i> . "	5 "	<i>11</i> 11	<i>11</i> 11	<i>11</i> h	11 11:	
Surrogate: o-Terphenyl	a	80.4 %	60-17		"	'n	n	"	
C-B01-1A-112113 (1311263-03) Liquid Diesel Range Organics (C10-C24)	Sampled: 11/2 ND	0.050	mg/L	1/21/13	13:26 B3K2703	11/25/13	11/07/12 11.3	0 EDA 9016D	
Surrogate: o-Terphenyl	ND	77.6 %	тель 60-17		B3K2/03	11/25/13	"	9 EPA 8015B	
Jet-A	ND	0.050	") 11	11	н.	н	n	
Surrogate: o-Terphenyl Oil Range Organics (C22-C36)	ND	77.6 % 0.050	60-17.	5	<i>II</i>	<i>11</i>	"	H H	
Surrogate: o-Terphenyl		77.6 %	60-17	5	"	"	"	"	
C-B05-4-112113 (1311263-04) Liquid	Sampled: 11/21	/13 05:30 R	eceived: 11/	21/13 1	3:26				
Diesel Range Organics (C10-C24)	ND	0.050	mg/L	1	B3K2703	11/25/13	I1/27/13 11:5	1 EPA 8015B	
Surrogate: o-Terphenyl Jet-A	ND	76.4 % 0.050	60-17.	5 "	<i>11</i> H	"	<i>11</i> 11	<i>11</i>	
Surrogate: o-Terphenyl Oil Range Organics (C22-C36)	ND	76.4 %	60-17	5 "	<i>11</i> 11	<i>II</i>		<i>n</i>	<u> </u>
Surrogate: o-Terphenyl	ND	76.4 %	60-17			"	"		
	Sampled: 11/21	•			3:26				
Diesel Range Organics (C10-C24)	ND	0.050	mg/L	1	B3K2703	11/25/13	11/27/13 12:0	2 EPA 8015B	
Surrogate: o-Terphenyl Jet-A	ND	86.8 % 0.050	60-17.	5 "	"	<i>n</i> 11	n H	<i>II</i>	
Surrogate: o-Terphenyl		86.8 %	60-17		"	"	"	n	
Oil Range Organics (C22-C36)	ND	0.050		н	11 11	"		"	

Analyte

Naphthalene

Acenaphthene

Phenanthrene

Fluoranthene

Anthracene

Fluorene

Pyrene

Chrysene

Benzo (b) fluoranthene

Benzo (k) fluoranthene

Dibenzo(a,h)anthracene

Indeno (1,2,3-cd) pyrene

Surrogate: Decafluorobiphenyl

Benzo (g,h,i) perylene

Benzo (a) pyrene

AMEC 9177 Sky Park Court Suite A	Project Number: [no	a .	Reported:
San Diego CA, 92123	Project Manager: An	nanda Archenhold	12/18/13 10:47
Pol	ynuclear Aromatic Compou	nds by EPA Method 8310	
	Sierra Analytical	l Labs, Inc.	

Result Units Dilution Batch Prepared Analyzed Method Limit Sampled: 11/21/13 05:20 Received: 11/21/13 13:26 C-B01-1A-112113-DUP (1311263-02) Liquid μg/L 11/27/13 ND 0.500 1 B3L0229 12/02/13 14:16 EPA 8310 Acenaphthylene ND 1.00 0 ŋ 9 п -11 11 н 9 п ND 1.00 0 ND 0.100 н ... п н 11 ND 0.100 11 н н ш ND 0.0500 n ... ND 0.100 ND 0.100 0.0500 Benzo (a) anthracene ND

11

30-115

Reporting

0.100

0.100

0.0500

0.0500

0.100

0.100

0.100

57.6 %

C-B01-1A-112113 (1311263-03) Liquid	Sampled: 11/21/13 05:20	Received: 11/21/13 13:2	6

ND

ND

ND

ND

ND

ND

ND

Naphthalene	ND	0.500	μg/L	1	B3L0229	11/27/13	12/02/13 14:16	EPA 8310
Acenaphthylene	ND	1.00	U U	п	н	u.	-N	It .
Acenaphthene	ND	1.00	, и	0	н	н	н	JI .
Fluorene	ND	0.100	n	0	н	н	н	u.
Phenanthrene	ND	0.100	11	'n		u.	11	9
Anthracene	ND	0.0500	ч	н	11	11		n
Fluoranthene	ND	0.100	11	н	10	11	"	н
Pyrene	ND	0.100	n	0	п	11	11	B-
Benzo (a) anthracene	ND	0,0500	н	91-	п	н	п	н
Chrysene	ND	0.100	н	9	n	н	н	н
Benzo (b) fluoranthene	ND	0.100	n	11	н	н	н.,	в
Benzo (k) fluoranthene	ND	0.0500	-11	п	U	м	п	н
Benzo (a) pyrene	ND	0.0500		п	"	n	н	н
Dibenzo(a,h)anthracene	ND	0.100		в	н	н	н	n
Benzo (g,h,i) perylene	ND	0.100		н	11	н	н	n
Indeno (1,2,3-cd) pyrene	ND	0.100	n -	H	11	и	н	11
Surrogate: Decafluorobiphenyl		59.2 %	30-1	15	"	"	"	11

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Notes

n

ai.

н

11

п

n

...

11

"

#

AMEC	Project: San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	12/18/13 10:47

Polynuclear Aromatic Compounds by EPA Method 8310

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B05-4-112113 (1311263-04) Liquid	Sampled: 11/21	'13 05:30 R	eceived:	11/21/13 13	3:26		4140		
Naphthalene	ND	0.500	μg/L	1	B3L0229	11/27/13	12/02/13 14:16	EPA 8310	
Acenaphthylene	ND	1.00	п	11	11	n	н	н	
Acenaphthene	ND	1.00	n	н	11	-H	н	0	
Fluorene	ND	0.100	<u>,</u> n	н	и	п	н	n	
Phenanthrene	ND	0.100	n	н	и	н	н	н	
Anthracene	ND	0.0500	н	н	н	н	н	н	
Fluoranthene	ND	0.100	9	п	н	"	н	н	
Pyrene	ND	0,100	11	11	н	11	н	н	
Benzo (a) anthracene	ND	0.0500	11	11	н	11	n	н	
Chrysene	ND	0.100	11	11	н	11	п	н	
Benzo (b) fluoranthene	ND	0.100	11	11	н	11	н	н	
Benzo (k) fluoranthene	ND	0.0500	0	u.	n.	11	н	н	
Benzo (a) pyrene	ND	0.0500	0	11	u.	11	н	н	
Dibenzo(a,h)anthracene	ND	0.100	n	ÌI	u.	11	п.	н	
Benzo (g,h,i) perylene	ND	0.100	н	н	11	11	н	11	
Indeno (1,2,3-cd) pyrene	ND	0.100	в	н		н	и	11	
Surrogate: Decafluorobiphenyl		66.0 %	30-	115	"	"	"	11	
S-B06-12-112113 (1311263-05) Liquid	Sampled: 11/21	/13 05:51	Received:	11/21/13 1	3:26				
Naphthalene	ND	0.500	μg/L	1	B3L0229	11/27/13	12/02/13 14:16	EPA 8310	
Acenaphthylene	ND	1.00	.8	н	0	н	tr.	11	
Acenaphthene	ND	1.00	н	н	0	н	11	11	
Fluorene	ND	0.100	н	н	11	н	н	11	
Phenanthrene	ND	0.100	н	н	U U	и	и	н	
Anthracene	ND	0.0500	н	н	11	н	н	ч	
Fluoranthene	ND	0.100	н	н	u	11	и	11	
Pyrene	ND	0.100	н	н	0	н	н	н	
Benzo (a) anthracene	ND	0.0500	н	н	11	11	н	н	
· ····································			н	н	u.	11	н	н	
Chrysene	ND	0.100							
Chrysene Benzo (b) fluoranthene	ND ND	$\begin{array}{c} 0.100 \\ 0.100 \end{array}$	n	н	11	11	н	н	
Benzo (b) fluoranthene	ND	0,100	n H	H H	u u	11	n	n N	
Benzo (b) fluoranthene Benzo (k) fluoranthene	ND ND	0,100 0.0500							
Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene	ND ND ND	0,100 0.0500 0.0500	н	н	u	11	н	н	
Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Dibenzo(a,h)anthracene	ND ND ND ND	0,100 0.0500 0.0500 0.100	H H	H	u Ji	11 12	N H	н 11 12	
Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene	ND ND ND	0,100 0.0500 0.0500	11 11 11	H H H	11 11 11	n n	11 11 11	H H	

S I E R R A ANALYTICAL

Cadmium

Chromium

Copper

Iron

Lead

Nickel

Silver

Zinc

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123	Project: San Diego Airport (2013) Project Number: [none] Project Manager: Amanda Archenhold									d: 0:47
	Metals by									
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3K2207 - EPA 200 Series										
Blank (B3K2207-BLK1)				Prepared:	11/22/13	Analyzed	: 11/23/13			
Aluminum	ND	25	μg/L							
Arsenic	ND	3.0	U.							
Cadmium	- ND	2.0	11							
Chromium	ND	3.0	11						`	
Copper	ND	1.0	n							
ron	ND	0.025	mg/L							
ead	ND	1.0	μg/L							
lickel	ND	5.0	11							
liver	ND	1.5	11							
Linc	ND	1.0	IT							
Blank (B3K2207-BLK2)				Prepared:	11/22/13	Analyzed	I: 11/23/13			
Aluminum	ND	25	μg/L							
Arsenic	ND	3.0	9	,						
Cadmium	ND	. 2.0	п							
Chromium	ND	3.0	11							
Copper	ND	1.0	H							
ron	ND	0.025	mg/L							
Lead	ND	1,0	μg/L							
Vickel	ND	5.0	u.							
Silver	ND	1.5	11							
Zinc	ND	1.0	н							
LCS (B3K2207-BS1)				Prepared	: 11/22/13	Analyzed	1: 11/23/13			
Aluminum	111	25	μg/L	100		111	85-115			
Arsenic	101	3.0	11	100	÷.,	101	85-115			
							05 115			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

н

н

n

mg/L μg/L

п

н

н

2.0

3.0

1.0

1.0

5.0

1.5

1.0

0.025

99.2

104

102

0.104

92,4

102

97.8

97.1

100

100

100

0.100

100

100

100

100

99.2

104

102

104

92.4

102

97.8

97.1

85-115

85-115

85-115

85-115

85-115

85-115

85-115

85-115

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	mber: [n	n Diego A one] nanda Arch		013)			Reporte 12/18/13	
	Metals by	EPA 200 Se	eries M	ethods - Q	uality C	ontrol				
		Sierra Ar	nalytica	l Labs, I	nc.					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3K2207 - EPA 200 Series										
LCS (B3K2207-BS2)				Prepared:	11/22/13	Analyzed:	11/23/13			
luminum	108	25	μg/L	100		108	85-115			-
arsenic	106	3.0	1	100		106	85-115			
admium	97.1	2.0	u	100		97.1	85-115			
Chromium	103	3.0	11	100		103	85-115			
opper	100	1.0	40	100		100	85-115			
on	0.102	0.025	mg/L	0.100		102	85-115			
ead	87.8	1.0	μg/L	100		87.8	85-115			
lickel	89.3	5.0	"	100		89.3	85-115			
ilver	96.2	1.5	н	100		96.2	85-115			
Cinc	96.5	1.0	ท	100		96.5	85-115			
Matrix Spike (B3K2207-MS1)	So	urce: 131126	3-01	Prenared	11/22/13	Analyzed:				
	96.0	25	μg/L	100	ND	96.0	70-130			·
Arsenic	104	3.0	10	100	ND	104	70-130			
Cadmium	99.8	2.0	н	100	ND	99.8	70-130			
Thromium	98.6	3.0	n.	100	ND	98.6	75-130			
Copper	104	1.0	11	100	0.30	104	70-130			
ron	0.107	0.025	mg/L	0,100	ND	107	70-130			
ead	89.3	1.0	μg/L	100	ND	89.3	70-130	-		
Vickel	102	5.0	μg/L 11	100	ND	102	70-130			
Silver	102	1.5	п	100	0.70	102	70-130			
Zinc	85.9	1.0	н	100	ND	85,9	70-130			
			2.05			Analyzed:				
Matrix Spike (B3K2207-MS2)	124	urce: 131126	2-05 μg/L	100	40	Analyzed: 84.0	70-130			
Arsenic	104	3.0	_μg/L	100	40 ND	84.0 104	70-130			
Cadmium	98.4	2.0	· 11	100	ND	98.4	70-130			
Chromium	98. 4 97.0	2.0 3.0	u u	100	ND	98.4 97.0	75-130			
Copper	97.0 117	3.0 1.0	11	100	ND					
ron	0.160					117	70-130			
		0.025	mg/L	0.100	0.088	72.0	70-130			
sead Vielent	83.7	1.0	μg/L "	100	ND	83.7	70-130			
Nickel	98.0	5.0	n	100	0.90	97.1	70-130			
Silver	104	1.5		100	0.60	103	70-130			
Zinc	138	. 1,0		100	55	83.0	70-130			

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nur	nber: [no	n Diego A one] nanda Arche)13)			Reporte 12/18/13	1
	Metals by]	EPA 200 Se	eries Mo	ethods - Q	uality Co	ontrol				
· · · · · · · · · · · · · · · · · · ·		Sierra An	alytica	l Labs, h	nc.					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3K2207 - EPA 200 Series									<u>.</u>	
Matrix Spike Dup (B3K2207-MSD1)	Source: 1311263-01			Prepared:	11/22/13	Analyzed	: 11/23/13			
Aluminum	112	25	μg/L	100	ND	112	70-130	15.4	30	
Arsenic	84.6	3.0	н	100	ND	84.6	70-130	20.6	30	
Cadmium	100	2.0	и	100	ND	100	70-130	0.200	30	
Chromium	104	3.0	11	100	ND	104	75-130	5.33	30	
Copper	107	1.0	U	100	0.30	107	70-130	2.84	30	
ron	0,105	0.025	mg/L	0.100	ND	105	70-130	1.89	30	
Lead	86.9	1.0	μg/L	100	ND	86.9	70-130	2.72	30	
Nickel	103	5.0	л	100	ND	103	70-130	0.976	30	
Silver	100	1.5	н	100	0.70	99.3	70-130	0.995	30	
Zinc	104	1.0	IJ	100	ND	104	70-130	19,1	30	
Matrix Spike Dup (B3K2207-MSD2)	Sou	irce: 131126	2-05	Prepared:	11/22/13	Analyzed	I: 11/23/13			
Aluminum	112	25	μg/L	100	40	72.0	70-130	10.2	30	
Arsenic	104	3.0	ч	100	ND	104	70-130	0.00	30	
Cadmium	99.7	2.0	D	100	ND	99.7	70-130	1.31	30	
Chromium	99.6	3.0		100	ND	99.6	75-130	2.64	30	
Copper	116	1.0	11	100	ND	116	70-130	0.858	30	
Iron	0.158	0.025	mg/L	0.100	0.088	70.0	70-130	1.26	30	
Lead	77.8	1.0	μg/L	100	ND	77.8	70-130	7.31	30	
Nickel	105	5.0	н	100	0.90	104	70-130	6.90	30	
Silver	102	1.5	0	100	0.60	101	70-130	1:94	30	
Zinc	137	1,0	11	100	55	82.0	70-130	0.727	30	
Batch B3K2209 - EPA 200 Series										,
Blank (B3K2209-BLK1)				Prepared:	11/22/13	Analyzed	1: 11/26 /13			
Hexayalent Chromium	ND	0,0020	mg/L							

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	mber: [n	an Diego A one] manda Arche		013)			Reported: 12/18/13 10:47		
	Metals by]	EPA 200 Se	eries M	ethods - Qu	uality C	ontrol					
		Sierra An	alytica	al Labs, Ir	ıc.						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B3K2209 - EPA 200 Series	<u> </u>										
Blank (B3K2209-BLK2)				Prepared:	11/22/13	Analyzed:	11/26/13				
Hexavalent Chromium	ND	0.0020	mg/L			· • • •					
LCS (B3K2209-BS1)				Prenared:	11/22/13	Analyzed:	11/26/13				
Hexavalent Chromium	0.00270	0.0020	mg/L	0.00300		90.0	85-115				
LCS (B3K2209-BS2)				Prepared:	11/22/13	Analyzed:	11/26/13				
Hexavalent Chromium	0.00297	0.0020	mg/L	0.00300		99.0	85-115				
Matrix Spike (B3K2209-MS1)	Sou	irce: 131126	3-01	Prepared:	11/22/13	Analyzed:	11/26/13				
lexavalent Chromium	0.00284	0.0020	mg/L	0.00300	ND	94.7	80-120				
Matrix Spike (B3K2209-MS2)	Sou	rce: 131126	2-05	Prepared:	11/22/13	Analyzed:	11/26/13				
Hexavalent Chromium	0.00285	0.0020	mg/L	0.00300	ND	95.0	80-120				
Matrix Spike Dup (B3K2209-MSD1)	Sou	irce: 131126	3-01	Prenared	11/22/13	Analyzed:	11/26/13				
Hexavalent Chromium	0.00259	0.0020	mg/L	0.00300	ND	86.3	80-120	9.21	20		
Madula Caller Dear (D21/2200 MCD2)	G		2.05	D	11/00/10	* 1 1	11/06/10				
Matrix Spike Dup (B3K2209-MSD2) Hexavalent Chromium	0,00285	0.0020	2-05 mg/L	0,00300	ND	Analyzed: 95.0	80-120	0.00	20		
	0,00200	0.0020	mg/ D	0,00500		25.0	00-120	0.00	20		
Batch B3K2224 - EPA 200 Series		·····		1		4 N N					
Blank (B3K2224-BLK1)				Prepared:	11/22/13	Analyzed:	11/25/13				
Mercury	ND	0.00030	mg/L								
Blank (B3K2224-BLK2)				Prepared:	11/22/13	Analyzed:	11/25/13				
Mercury	ND	0.00030	mg/L								

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	nber: [no	n Diego A one] nanda Arche	Reported: 12/18/13 10:47					
	Metals by]	EPA 200 Se Sierra An		-	•	ontrol				
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3K2224 - EPA 200 Series				· · ·						
LCS (B3K2224-BS1)				Prepared:	11/22/13	Analyzed:	11/25/13			
Mercury	0.00090	0.00030	mg/L	0.00100		90.0	75-125			
LCS (B3K2224-BS2)				Prepared:	11/22/13	Analyzed:	11/25/13			
Mercury	0.00082	0.00030	ıng/L	0.00100		82.0	75-125			
Matrix Spike (B3K2224-MS1)	Sou	rce: 131126	1-01	Prepared:	11/22/13	Analyzed:	11/25/13			
Mercury	0,00098	0.00030	mg/L	0.00100	ND	98.0	75-125			
Matrix Spike (B3K2224-MS2)	Sou	rce: 131126	2-11	Prepared:	11/22/13	Analyzed:	11/25/13			
Mercury	0.00090	0.00030	mg/L	0.00100	ND	90.0	75-125			
Matrix Spike Dup (B3K2224-MSD1)	Sou	rce: 131126	1-01	Prepared:	11/22/13	Analyzed:	11/25/13			
Mercury	0.00097	0.00030	mg/L	0.00100	ND	97.0	75-125	1.03	20	
Matrix Spike Dup (B3K2224-MSD2)	Sou	arce: 131126	2-11	Prepared:	11/22/13	Analyzed:	11/25/13			
Mercury	0.00091	0,00030	mg/L	0.00100	ND	91.0	75-125	1.10	20	

Copper

Lead

Nickel

Silver

Zinc

Arsenic

Copper

Lead

Nickel

Silver

Zinc

Arsenic

Copper

Lead

Nickel

Silver

Zinc

Cadmium

Chromium

Cadmium

Chromium

LCS (B3K2208-BS1)

Matrix Spike (B3K2208-MS1)

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project: San Diego Airport (2013) Project Number: [none] Project Manager: Amanda Archenhold								d: 10:47
· ·	Metals (Dissolve	d) by EPA	200 Ser	ies Metho	ds - Qua	lity Cont	rol			
		Sierra An	alytica	ıl Labs, I	nc.					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3K2208 - EPA 200 Seri	es									
Blank (B3K2208-BLK1)				Prepared:	11/22/13	Analyzed	: 11/23/13			
Arsenic	ND	3.0	μg/L							
Cadmium	ND	2.0	и							
Chromium	ND	3.0	-11							

н

n,

я

-11

11

μg/L

n

n

н

н

ņ

ц

н

μg/L

91

n

н

B

11

я

н

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

Prepared: 11/22/13 Analyzed: 11/23/13

85.8

102

108

110

85.1

99.0

110

95.9

83.3

97.8

102

110

94.5

102

98,8

106

Prepared: 11/22/13 Analyzed: 11/23/13

ND

ND

ND

3,5

ND

ND

ND

18

85-115

85-115

85-115

85-115

85-115

85-115

85-115

85-115

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

1.0

2.0

5.0

1.5

1.0

3.0

2.0

3.0

1.0

2.0

5.0

1.5

1.0

3.0

2.0

3.0

1.0

2.0

5.0

1.5

1.0

Source: 1311263-02

ND

ND

ND

ND

ND

85.8

102

108

110

85.1

99.0

110

95,9

83.3

97.8

102

113

94.5

102

98.8

124

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	nber: [n	in Diego Ai one] nanda Arche	•)13)			Reported: 12/18/13 10:47		
Met	als (Dissolved	l) by EPA Sierra An				lity Cont	rol				
·											
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B3K2208 - EPA 200 Series											
Matrix Spike Dup (B3K2208-MSD1)	Sou	rce: 131126	3-02	Prepared:	11/22/13	Analyzed	: 11/23/13				
Arsenic	104	3.0	µg/L	100	ND	104	70-130	22.1	30		
Cadmium	96.3	2.0		100	ND	96.3	70-130	1.55	30		
Chromium	101	3.0	п	100	ND	101	70-130	0.985	30		
Copper	108	1.0	н	100	3.5	104	70-130	4.52	30		
Lead	82.5	2.0	н	100	ND	82.5	70-130	13.6	30		
Nickel	105	5.0	н	100	ND	105	70-130	2.90	30		
Silver	97.1	1.5	11	100	ND	97.1	70-130	1.74	30		
Zinc	114	1.0	11	100	18	96.0	70-130	8.40	30		
Batch B3K2210 - EPA 200 Series											
Blank (B3K2210-BLK1)				Prepared:	11/22/13	Analyzed	: 11/27/13				
Hexavalent Chromium	ND	0.0020	mg/L								
LCS (B3K2210-BS1)				Prepared:	11/22/13	Analyzed	: 11/27/13				
Hexavalent Chromium	0.00298	0.0020	mg/L	0,00300		99.3	85-115				
Matrix Spike (B3K2210-MS1)	Sou	rce: 131126	3-02	Prepared:	11/22/13	Analyzed	l: 11/27/13		,		
Hexavalent Chromium	0.00300	0.0020	mg/L	0.00300	ND	100	80-120				
Matrix Spike Dup (B3K2210-MSD1)	Sou	rce: 131126	3-02	Prepared:	11/22/13	Analyzed	l: 11/27/13				
Hexavalent Chromium	0.00300	0.0020	mg/L	0.00300	ND	100	80-120	0.00	20		
Batch B3K2225 - EPA 200 Series											
Blank (B3K2225-BLK1)				Prepared:	11/22/13	Analyzec	1: 11/25/13				
Mercury	ND	0.00073	mg/L								

ſ

Mercury

AMEC		Pr	oject: S	an Diego A	irport (2	013)					
9177 Sky Park Court Suite A		Project Nu			• •	,			Reporte	d:	
San Diego CA, 92123		Project Mar	ager: A	manda Arch	enhold			12/18/13 10:47			
Μ	etals (Dissolve	d) by EPA	200 Sei	ries Metho	ds - Qua	hty Cont	rol				
		Sierra An	alytic	al Labs, I	nc.						
		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B3K2225 - EPA 200 Series								-			
LCS (B3K2225-BS1)				Prepared:	11/22/13	Analyzed	: 11/25/13				
Mercury	0.00080	0.00073	mg/L	0.00100		80.0	80-120				
Matrix Spike (B3K2225-MS1)	Sou	rce: 131126.	3-02	Prepared:	11/22/13	Analyzed	: 11/25/13				
Mercury	0.00105	0.00073	mg/L	0.00100	ND	105	80-120				
Matrix Spike Dup (B3K2225-MSD1)	Sou	rce: 131126	3-02	Prepared:	11/22/13	Analyzed	1: 11/25/13				

mg/L

0.00100

ND

102

80-120

2.90

20

0.00102

0.00073

AMEC	Project: San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	12/18/13 10:47

Organochlorine Pesticides and PCBs by EPA Method 608 - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3L0227 - EPA 3510C Sep I	Tunnel							- · · ·		· · ·
Blank (B3L0227-BLK1)				Prepared:	11/27/13	Analyzed	: 12/02/13			
Aldrin	ND	0.075	μg/L							
PCB-1016	ND	0.50	"							
HCH-alpha	ND	0.010								
PCB-1221	ND	0.50	н							
HCH-beta	ND	0.050	н							
PCB-1232	ND	0,50	ч.							
HCH-delta	ND	0.10	9							
PCB-1242	ND	0.50	п							
HCH-gamma (Lindane)	ND	0.20	Ħ							
PCB-1248	ND	0.50	11							
Chlordane	ND	0.050	11							
PCB-1254	ND	0.50	н							
4,4′-DDD	ND	0.010	11							
PCB-1260	ND	0,50	н							
4,4′-DDE	ND	0.010	н							
4,4′-DDT	ND	0.010	u.							
Dieldrin	ND	0.020	11							
Endosulfan I	ND	0.020								
Endosulfan II	ND	0.050	п							
Endosulfan sulfate	ND	0.050	0							
Endrin	ND	0.10	н							
Endrin aldehyde	ND	0.050	н							
Heptachlor	ND	0.010	н							
Heptachlor epoxide	ND	0.010	н							
Toxaphene	ND	1.0								
PCB-1016	ND	0.50								•
PCB-1221	ND	0.50	U							
PCB-1232	ND	0.50	11							
PCB-1242	ND	0.50	у,							
PCB-1248	ND	0.50								
PCB-1254	ND	0.50								
PCB-1260	ND	0.50	н							
Surrogate: Decachlorobiphenyl	0,145		"	0.250		58.0	42-147			
Surrogate: Tetrachloro-meta-xylene	0.263		"	0.250		105	42-147			
Surrogate: Decachlorobiphenyl	0.145		"	0.250		58.0	42-147			
Surrogate: Tetrachloro-meta-xylene	0.263		"	0.250		105	42-147			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

26052 Merit Circle Suite 105, Laguna Hills, California 92653 Telephone: (949) 348-9389 Fax: (949) 348-9115 E-Mail: sierralabs @ sierralabs.net

AMECProject:San Diego Airport (2013)9177 Sky Park Court Suite AProject Number:[none]Reported:San Diego CA, 92123Project Manager:Amanda Archenhold12/18/13 10:47

Organochlorine Pesticides and PCBs by EPA Method 608 - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3L0227 - EPA 3510C Se	p Funnel				_					
LCS (B3L0227-BS1)	·			Prepared:	11/27/13	Analyzed	1: 12/02/13			
Aldrin	0.0897	0.075	µg/L	0.0800		112	80-120			
HCH-gamma (Lindane)	0.0766	0.20	н	0.0800		95.8	80-120			
PCB-1260	2.15	0.50	н	2.00		108	80-120			
4,4′-DDT	0.213	0.010	n	0.200		106	80-120			
Dieldrin	0,196	0.020	н	0.200		98.0	80-120			
Heptachlor	0.0878	0.010	н	0.0800		110	80-120			
LCS (B3L0227-BS2)				Prepared:	11/27/13	Analyzed	l: 12/02/13			
Aldrin	0.0903	0.075	µg/L	0.0800		113	80-120			
HCH-gamma (Lindane)	0.0878	0.20		0.0800		110	80-120			
PCB-1260	1.76	0.50	"	2.00		88.0	80-120			
4,4´-DDT	0.175	0.010	0	0.200		87.5	80-120			
Dieldrin	0.186	0.020	**	0.200		93.0	80-120			
Heptachlor	0.0701	0.010	-19	0.0800		87.6	80-120			
LCS Dup (B3L0227-BSD1)				Prepared:	11/27/13	Analyzed	l: 12/02/13			
Aldrin	0.0865	0.075	μg/L	0.0800		108	80-120	3.63	30	
HCH-gamma (Lindane)	0.0753	0.20	н -	0.0800		94,1	80-120	1.71	30	
PCB-1260	2.21	0.50	и	2.00		110	80-120	2.75	30	
4,4′-DDT	0.167	0.010	и.	0.200		83,5	80-120	24.2	30	
Dieldrin	0.173	0.020	н	0.200		86.5	80-120	12.5	30	
Heptachlor	0.0852	0.010	u	0.0800		106	80-120	3.01	30	

AMEC	Project: San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	12/18/13 10:47

Total Petroleum Hydrocarbons (TPH) by GC/FID - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3K2703 - EPA 3510C Sep	Funnel									
Blank (B3K2703-BLK1)				Prepared:	11/20/13	Analyzed	: 11/21/13			
Diesel Range Organics (C10-C24)	ND	0,050	mg/L							
Jet-A	ND	0.050	11							
Oil Range Organics (C22-C36)	ND	0.050	11							
Surrogate: o-Terphenyl	0.0198		И.	0.0250		79.2	60-175			
Surrogate: o-Terphenyl	0.0198		и.	0.0250		79.2	60-175			
Surrogate: o-Terphenyl	0.0198		"	0.0250		<i>79.2</i>	60-175			
LCS (B3K2703-BS1)				Prepared:	11/20/13	Analyzed	: 11/21/13			
Diesel Range Organics (C10-C24)	0.515	0.050	mg/L	0.500		103	80-120			
Diesel Range Organics (C10-C24)	0.515	0.050	· n	0.500		103	80-120			
Diesel Range Organics (C10-C24)	0.515	0,050	н	0.500		103	80-120			
LCS (B3K2703-BS2)				Prepared:	11/20/13	Analyzed	: 11/21/13			
Diesel Range Organics (C10-C24)	0,456	0.050	mg/L	0.500		91.2	80-120			
Diesel Range Organics (C10-C24)	0.456	0.050	11	0.500		91.2	80-120			
Diesel Range Organics (C10-C24)	0.456	0.050	11	0.500		91.2	80-120			
LCS Dup (B3K2703-BSD1)				Prepared:	11/20/13	Analyzed	: 11/21/13			
Diesel Range Organics (C10-C24)	0.472	0.050	mg/L	0.500		94,4	80-120	8.71	30	
Diesel Range Organics (C10-C24)	0.472	0.050	D.	0.500		94.4	80-120	8.71	30	
Diesel Range Organics (C10-C24)	0,472	0.050	н	0.500		94,4	80-120	8.71	30	

AMEC	Project: San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	12/18/13 10:47

Polynuclear Aromatic Compounds by EPA Method 8310 - Quality Control - - - -

_...

		Sierra An	alytica	ul Labs, I	nc.					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3L0229 - EPA 3510C Sep 1	Funnel									
Blank (B3L0229-BLK1)				Prepared:	11/27/13	Analyzed	: 12/02/13			
Naphthalene	ND	0.500	μg/L	÷						
Acenaphthylene	ND	1.00	11							
Acenaphthene	ND	1.00	1f							
Fluorene	ND	0.100	11							
Phenanthrene	ND	0.100	11							
Anthracene	ND	0.0500								
Fluoranthene	ND	0.100	н							
Pyrene	ND	0.100	п							
Benzo (a) anthracene	ND	0.0500	н,							
Chrysene	ND	0.100	п							
Benzo (b) fluoranthene	ND	0.100	н							
Benzo (k) fluoranthene	ND	0.0500	н							
Benzo (a) pyrene	ND	0.0500	ŧ							
Dibenzo(a,h)anthracene	ND	0.100	11							
Benzo (g,h,i) perylene	ND	0.100	ч							
Indeno (1,2,3-cd) pyrene	ND	0.100	л							
Surrogate: Decafluorobiphenyl	1.44		п	2.50		57.6	30-115			
LCS (B3L0229-BS1)				Prepared:	11/27/13	Analyzed	: 12/02/13			
Naphthalene	0.507	0.500	μg/L	0.500		101	60-130			
Fluorene	0.479	0.100	-11	0.500		95.8	60-130			
Pyrene	0.338	0.100	н	0.500		67.6	60-130			
Benzo (a) pyrene	0.454	0.0500	'n	0.500		90.8	60-130			
Indeno (1,2,3-cd) pyrene	0.391	0.100	ч	0,500		78.2	60-130			
Surrogate: Decafluorobiphenyl	1.21		"	2.50		48.4	30-115			
Matrix Spike (B3L0229-MS1)	Sou	irce: 131126	3-02	Prepared:	11/27/13	Analyzed	: 12/02/13			
Naphthalene	0.580	0.500	μg/L	0.500	ND	116	60-140			
Fluorene	0.411	0.100	11	0.500	ND	82.2	60-140			
Pyrene	0.575	0.100	U.	0.500	ND	115	60-140			
Benzo (a) pyrene	0.559	0.0500	11	0.500	ND	112	60-140			
Indeno (1,2,3-cd) pyrene	0.439	0.100	11	0.500	ND	87.8	60-140			
Surrogate: Decafluorobiphenyl	2.31		'n	2.50		92.4	30-115			

Project: San Diego Airport (2013)	
Project Number: [none]	Reported:
Project Manager: Amanda Archenhold	12/18/13 10:47
	Project Number: [none]

Polynuclear Aromatic Compounds by EPA Method 8310 - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3L0229 - EPA 3510C Sep Fu	nnel									
Matrix Spike Dup (B3L0229-MSD1)	Source: 1311263-02		Prepared:	11/27/13	Analyzed:	12/02/13				
Naphthalene	0.489	0.500	μg/L	0,500	ND	97.8	60-140	17.0	20	
Fluorene	0.357	0.100		0.500	ND	71.4	60-140	14.1	20	
Pyrene	0.550	0.100		0.500	ND	110	60-140	4.44	20	
Benzo (a) pyrene	0.469	0.0500	н	0.500	ND	93.8	60-140	17.5	20	
Indeno (1,2,3-cd) pyrene	0.469	0.100	n.	0.500	ND	93.8	60-140	6.61	20	
Surrogate: Decafluorobiphenyl	1,59		"	2.50		63.6	30-115			

AMEC		Project: San Diego Airport (2013)	
9177 SI	cy Park Court Suite A	Project Number: [none]	Reported:
San Die	ego CA, 92123	Project Manager: Amanda Archenhold	12/18/13 10:47
		Notes and Definitions	
DET	Analyte DETECTED		
ND	Analyte NOT DETECTED at or above the reporti	ing limit	
NR	Not Reported		

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Weck Laboratories, Inc.

Analyticel Laboratory Service - Since 1964

Certificate of Analysis

 Report Date:
 12/03/13 17:58

 Received Date:
 11/25/13 12:40

 Turnaround Time:
 Normal

Phones: (949) 348-9389 Fax: (949) 348-9115

P.O. #:

Attn: Nick Forsyth

Project: 1311263

Client: Sierra Analytical Labs, Inc. 26052 Merit Circle, Suite 104 Laguna Hills, CA 92653

Dear Nick Forsyth :

Enclosed are the results of analyses for samples received 11/25/2013 with the Chain of Custody document. The samples were received in good condition, at 5.2 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Lab Sample ID: 3K25022-01 Sampled by: Client	Sample I Sampled			2113 (1311	263-05)				Ма	trix: Water
Analyte	Result	MDL	MRL	Units	Dil	Method	Prepared	Analyzed	Batch	Qualifier
Ethylene glycol	ND		10	· mg/l	1	EPA 8015B	11/26/13	11/26/13 18:24	W3K1179	
Propylene glycol	ND		20 ·	mg/l	1	EPA 8015B	11/26/13	11/26/13 18:24	W3K1179	

Weck Laboratories, Inc.

Analytical Laboratory Service - Since 1964

Certificate of Analysis

Quality Control Section

Glycols by EPA Method 8015B - Quality Control

Batch W3K1179 - EPA 8015B

Blank (W3K1179-BLK1)					Prepared: 11/	'26/13 An	alyzed: 11/26	/13 15:34	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Ethylene glycol		ND		mg/i					
Propylene glycol		ND		mg/l					
LCS (W3K1179-BS1)					Prepared: 11/	26/13 An	alyzed: 11/26	/13 16:03	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Ethylene glycol		108		mg/l	100	108	46-129		
Matrix Spike (W3K1179-MS1)	So	urce: 3K2502	2-01		Prepared: 11/	26/13 An	alyzed: 11/26	6/13 16:31	
Analyte	Sample Result	QC <u>Result</u>	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Ethylene glycol	6.39	111		mg/l	100	105	57-127		
Matrix Spike Dup (W3K1179-MSD1)	So	urce: 3K2502	2-01		Prepared: 11/	/26/13 An	alyzed: 11/26	6/13 16:59	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Ethylene glycol	6.39	125		mg/l	100	118	57-127	12	25

Weck Laboratories, Inc.

Analytical Laboratory Service - Since 1964

Certificate of Analysis

Notes:

The Chain of Custody document is part of the analytical report.

Any remaining sample(s) for testing will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

An Absence of Total Coliform meets the drinking water standards as established by the State of California Department of Health Services. The Reporting Limit (RL) is referenced as laboratory's Practical Quantitation Limit (PQL). For Potable water analysis, the Reporting Limit (RL) is referenced as Detection Limit for reporting purposes (DLRs) defined by EPA.

If sample collected by Weck Laboratories, sampled in accordance to lab SOP MIS002

Authorized Signature Contact: Kim G Tu (Project Manager)

ELAP # 1132 LACSD # 10143 NELAC # 04229CA

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Weck Laboratories certifies that the test results meet all requirements of NELAC unless noted in the Case Narrative. This analytical report must be reproduced in its entirety.

Flags for Data Qualifiers:

ND	NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL).
Sub	Subcontracted analysis, original report enclosed.
DL	Method Detection Limit
RL	Method Reporting Limit
MDA	Minimum Detectable Activity
NR	Not Reportable

December 4, 2013

Rick Forsyth Sierra Analytical Labs, Inc. 26052 Merit Circle, Ste.104 Laguna Hills, CA 92653

Re: PTS File No: 43797 Physical Properties Data 1311263

Dear Mr. Forsyth:

Please find enclosed report for Physical Properties analyses conducted upon the sample received from your 1311263 project. All analyses were performed by applicable ASTM, EPA, or API methodologies. An electronic version of the report has previously been sent to your attention via the internet. Please note that the sample was used in entirety during testing.

PTS Laboratories, Inc. appreciates the opportunity to be of service. If you have any questions or require additional information, please contact Roxanne Maniquis at (562) 347-2512.

Sincerely, PTS Laboratories, Inc.

Michael Mark Brady, P.G. **District Manager**

Encl.

PTS Laboratories, Inc.

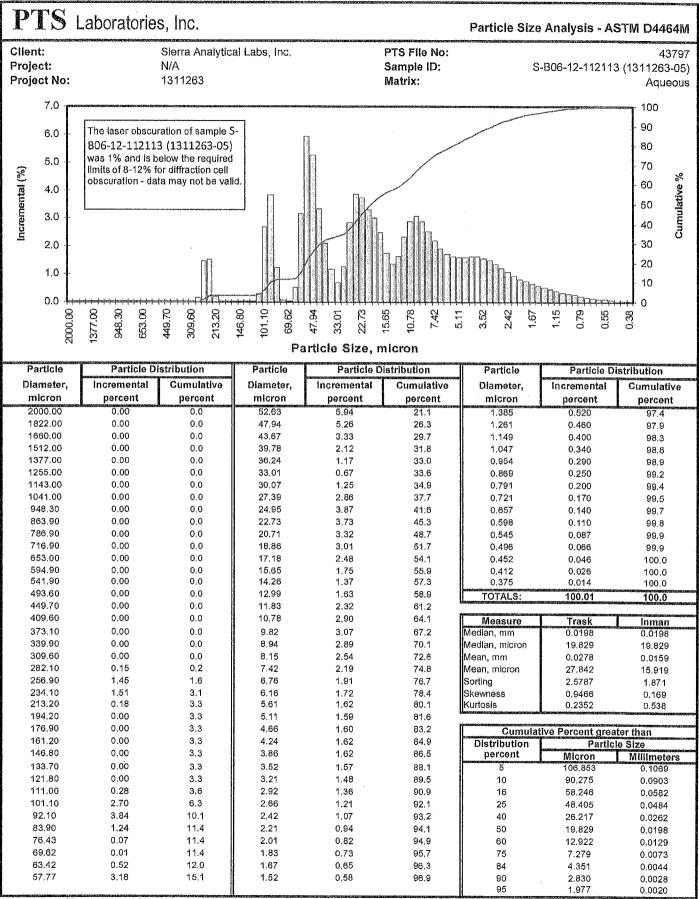
Sierra Analyticai Labs, Inc. PTS File No: 43797

> PARTICLE SIZE SUMMARY (METHODOLOGY: ASTM D4484M)

PROJECT NAME: N/A PROJECT NO: 1311263 Grain Size.

		ם משוו כולם			北京市 たいたい ための ひ					24			
Sample ID	Matrix	micron (1)	5%	10%	16%	25%	40%	5% 25% 40% 50% 60%	60%		84%	75% 84% 90% 95%	95%
S-B06-12-112113 (1311263-05)	Aqueous	19.829	106.853	90.275	58.246	48,405	26.217	19.829	12.922	7.279	4.351	2.830	1.977

Distribution nercent micr


Ċ

CUMULATIVE PERCE

* The laser obscuration of sample S-B06-12-112113 (1311263-05) was 1%. The sample was below the required limits of B-12% for diffraction cell obscuration - data may not be valid.

(1) Based on Trask Median

Page 1 of 2

© PTS Laboratories, Inc.

Phone: (562) 907-3607

Fax: (562) 907-3611

S NEE R RA	•	Sierra A	nalyti	CT ORDER cal Labs, Inc. t #: 1311263	1517 (
SENDING LABORATORY:	1974) (Alt Constant Co	and the summary and the state of the second s	ang ang kasakana ang kasa kana kasa kana kasa kasa kasa kasa	ŊĊĨĸĸĸĸĊĨĬŦĊĿĸĸĸĸĸĸĸĸĸĊŎŎſĿŢŎŎŎĬĊĬĬĬŢĹĬĬĬŢŎĸŎŢĬĬŢŎŎ	
Sierra Analytical Labs, Inc. 26052 Merit Circle, Suite 104 Laguna Hills, CA 92653 Phone: (949) 348-9389 Fax: (949) 348-9115 Laboratory Contact: Nick Forsyth	1	'lım Around 'lime Requested:	Winni 48 Hour 41 Day	24 Hour 72 Hour 5 Day	RECEIVING LABORATORY: PTS Laboratories 8100 Secura Way Santa Fe Springs, CA 90670 Phone : (562) 907-3607 Fax: (562) 907-3610
Analysis I	Expires	Sampled:	`	Laboratory ID	Comments
Sample ID: S-B06-12-112113 (1311263-05)	Llquid	11/21/13 05	5:51		ANALANA MANANANA MANANA MAN Manana manana manana Manana manana
Full Particle Sizing (Containers Supplied: (1L Amber (C) ()5/20/14 05	5:51			
	, 1999 - BANK BARAN BARAN			er by Karan Google fan ei card do moor noer fan en in	
				•••	
justice.					
· · ·					
<u>Special Instructions :</u>				l scott J. constructions	On the Hone Street Stre
Relinquished By	l (-25-() Date / T	3 @ 13:15 ime		Received By	<u>11/25//3</u> 12:15 Date/Time
Relinquished By	Date 7 T	ime	-	Received By	Date 7 Time
Relinquished By	Date / T	lme		Received By	Date / Time

PTS Laboratories, Inc.

Sierra Analytical Labs, Inc. PTS File No: 43797

> PARTICLE SIZE SUMMARY (METHODOLOGY: ASTM D4464M)

> > PROJECT NAME: PROJECT NO:

N/A 1311263

1.977 95% 2.830 80% 4.351 84% 7.279 75% CUMULATIVE PERCENT GREATER THAN Distribution percent, microns 25% | 40% | 50% | 60% | 75 12.922 19.829 26.217 48.405 25% 58.246 16% 90.275 10% 106.853 5% Median Grain Size, micron (1) 19.829 Aqueous Matrix S-B06-12-112113 (1311263-05) Sample ID

* The laser obscuration of sample S-B06-12-112113 (1311263-05) was 1%. The sample was below the required limits of 8-12% for diffraction cell obscuration - data may not be valid.

(1) Based on Trask Median

Page 1 of 1

CICORS

Analysis Request and Chain of Custody

SAN DIEGO AIRPORT

しないようなく、 - Swarks Mai 12:20 0 Count Bottle 105 Laguna Hills, CA 92653 June 26052 Merit Circle, Suite Phone: (949) 348-9389 Fax: (949) 348-9115 Q Preservative Sierra Analytical Date/Time: 1021-5 4°C 4°C 4°C 4°C 4°C Date/Time: <u>To:</u> 0.5 Gallon Plastic 0.5 Gallon Plastic 1L Clear 1L Amber 1L Amber Glass Glass Glass Bottle Size pH, SC, TSS, total hardness, total (Ai, As, Cd, Cu,Cr III, Cr O S 20 VI, Fe, Pb, Hg, Ni, Ag, Zn), Dissolved (As, Cd, Cu,Cr III, Cr VI, Pb, Hg, Ni, Ag, Zn), BOD, COD, ammonia, MBAS, pH, SC, TSS, total hardness, total (Al, As, Cd, Cu,Cr III, Cr VI, Fe, Pb, Hg, Ni, Ag, Zn), BOD, COD, ammonia, MBAS, Received By: Analyses Received By: Š ð ٩ Date/Time: 11/21/13, 1326 PCB, Chlordane O SZO^{OII & Grease} Page_ 0520 PAHS 840 0220 Date/Time: Time 11/21/13 Phone: (858) 278-3600 Fax: (858) 278-5300 1/21/13 3 02 C-B-01-14-1121 BUP 11/21/13 11/21/13 LLUNDA es. Date AMEC Environment & Infrastructure Barren ... Relinquished By: HWV Attn: Amanda Archenhold 01 C-B- 07-6-12113 BLK 03 C-B01-1A 11 2113 C-B01-1A | | 2 | 3 Sampler's Initials: A.(C-B01-1A 112113 9177 Sky Park Court San Diego, CA 92123 Relinquished By: SampleID From:

Analysis Request and Chain of Custody	SAN DIEGO AIRPORT	To: Sierra Analytical Sierra Analytical 26052 Merit Circle, Suite 105 Laguna Hills, CA 92653 Phone: (949) 348-9389 Fax: (949) 348-9115	Bottle Bottle Bottle Count Size Preservative Count	$\frac{13}{12} \frac{13}{0520} \text{pH, SC, TSS, total hardness, total (Al, As, Cd, Cu, Cr III, Cr 0.5 Gallon 4°C VI, Fe, Pb, Hg, Ni, Ag, Zn), Dissolved (As, Cd, Cu, Cr III, Cr Plastic 4°C 200, NI, Pb, Hg, Ni, Ag, Zn), BOD, COD, ammonia, MBAS, 200, 200, 200, 200, 200, 200, 200, 20$	13 0520 TPH (Jet fuel, diesel, motor oil) 1L Amber 4°C Glass	Oil & Grease 4°C Glass Grease	PAHs 1L Amber 4°C Glass	PCB, Chlordane 1L Amber 4°C Glass	$\frac{\overline{U}}{U} Date/Time: \underbrace{U/2/13, 13:2i}_{Pade} Received By: \underbrace{\underbrace{S}}_{of} \\ Date/Time: \underbrace{L/2/13, 13:2i}_{Pade} & \operatorname{Received By:}_{Date/Time: \underline{L}} \\ Date/Time: \underbrace{Date/Time: \underline{L}}_{Dade} \\ Date/Time: \underbrace{Date/Time: \underline{L}}_{Dade} \\ \end{array}$
		astructure xr. (858) 278-5300	Date Ti	1/21/13 05	<u>11/21/13</u> os				AW Wernet Date/T
		<i>From:</i> AMEC Environment & Infrastructure Attn: Amanda Archenhold 9177 Sky Park Court San Diego, CA 92123 Phone: (858) 278-3600 Fax: (858) 278-5300	SampleID	03 C-B01-1A 112 113	C-B01-1A 112113	C-B03-2	C-B03-2	C-B03-2	Sampler's Initials: ACA Relinquished By. MVM Relinquished By.

オトレイントマ

Analysis Request and Chain of Custody

SAN DIEGO AIRPORT

To: AMEC Environment & Infrastructure Attn: Amanda Archenhold 9177 Sky Park Court San Diego, CA 92123 Phone: (858) 278-3600 Fax: (858) 278-5300 From:

Sierra Analytical 26052 Merit Circle, Suite 105 Laguna Hills, CA 92653 Phone: (949) 348-9389 Fax: (949) 348-9115

SampielD	Date	Time	Analyses	Bottle Size	Preservative	Bottle Count
ĉ-B03-2			pH, SC, TSS, total hardness, total (Al, As, Cd, Cu,Cr III, Cr Vł, Fe, Pb, Hg, Ni, Ag, Zn), Dissolved (Xs, Cd, Gu,Gr III, CL VI, Pb, Hg, Ni, Ag, Zn), BOD, COD, ammonia, MBAS,	0.5 Gallon Plastic	4°C	
C-B03-2			-TPH-(Jet fuel, diesel, motor oil)		4°C	
C-B05.4			Oil & Grease	rt . Cle ar Glass	4°C	
04 c-B05-4 112113 11/2	11/21/13	0530	PAHS	1L Amber Glass	4°C	4-A 10/07
• C-B054 1 21 33	11/21/13	0530	PCB, Chlordane	1L Amber Glass	4°C	Particular Sciences
Sampler's Initials: <u>AC, A-W</u> Relinquished By: <u>Mm WernU</u> Relinquished By:		Date/Time:	Date/Time: 11/21/13; 13:26 Received By: 754 Date/Time:	Date	Date/Time: 10200 (3526) Date/Time:	CX2

of

Page

ι

K IJUNO

ENUICI F		<i>To:</i> Sierra Analytical 26052 Merit Circle, Suite 105 Laguna Hills, CA 92653 Phone: (949) 348-9115 Fax: (949) 348-9115	Bottle Preservative Bottle Size Preservative Count	0.5 Gallon 4°C Plastic	1L Amber 4°C Glass	1L-Clear Glass	1L Amber 4°C	1L Amber 4°C Glass	Date/Time: 1626-0526 Date/Time:
<u>Analysis Request and Chain of Custody</u>	SAN DIEGO AIRPORT	<i>From:</i> AMEC Environment & Infrastructure Attn: Amanda Archenhold 9177 Sky Park Court San Diego, CA 92123 Phone: (858) 278-3600 Fax: (858) 278-5300	SampleID Date Time Analyses	pH, SC, TSS, total hardness, total (Al, As, Cd, Cu,Cr III, Cr W, Fe, Pb, Hg, Ni, Ag, Zn), Dissolved (As, Cd, Cu,Cr III, Cr VI, Pb, Hg, Ni, Ag, Zn), BOD, COD, ammonia, MBAS,	O_{1} C-B054 11 2/13 11/21/13 O_{2} TPH (Jet fuel, diesel, motor oil)	C-B/6-5A	- C-BOG 5A-112-117 17 05-30 PAHS	C-BO6-5A112443 11/21/13 0530 PCB, Chlordane	Sampler's Initials: <u>AC, AW</u> Relinquished By: <u>ANNA UNA MA A</u> Date/Time: <u>II /21/13, 13:26</u> Received By: <u>Ket</u> Relinquished By: <u>Date/Time:</u>

II I SKORJ			To: Sierra Analytical 26052 Merit Circle, Suite 105 Laguna Hills, CA 92653 Phone: (949) 348-9389 Fax: (949) 348-9115	Bottle Bottle Size Preservative Count	d. Cu.Cr. 1914°C3, 0&6	4, 64,61 [19] 4°C (As Cd [19] 4°C :0D,	1L Amber 4°C Glass	1L Amber 4°C Glass	Date/Time: <u>W-21-23 @ 73:25</u> Date/Time:
· ·	Analysis Request and Chain of Custody	SAN DIEGO AIRPORT		Analyses	pH. SC. TSS. total hardness. total (Al. As. Cd. III, CF-VI, FE, Pb, Hg, Mi, Ag, Zh), BOD, COB,	pH, SC, TSS, total hardness, total (<u>NI, As</u> , Cd, GerCt III, Cr VI, <u>Fe, Pb, Hg</u> , <u>Ni, Ag, Zn</u>), <u>Dissolved (As</u> , Cd, Cu, Cr III, Cr VI , Pb, Hg, NI, Ag, Zn), BOD, COD,	PAHs	PCB, Chlordane	(1/21/13) 13: 26 Received By: 554 Received By: 50 8
	Anal		300	Time			0551	13 05 S	Date/Time:
			<i>From:</i> AMEC Environment & Infrastructure Attn: Amanda Archenhołd 9177 Sky Park Court San Diego, CA 92123 Phone: (858) 278-3600 Fax: (858) 278-5300	Date	BI K		3 11/2	21	AC, AU. Anner wernet
			<i>From:</i> AMEC Environment & Infr Attn: Amanda Archenhold 9177 Sky Park Court San Diego, CA 92123 Phone: (858) 278-3600 F	SampleID	S-B-	S=B06-12	05 S-B06-12.112/12	S-B06-12 11 21 13	 Sampler's Initials: <u>AC</u> Relinquished By: <u>AMMA</u> Relinquished By:

		le, Suite , CA 92653 8-9389 115	Bottle Count	416ansa kwa	2	2 3:26
		To: Sierra Analytical 26052 Merit Circle, Suite 105 Laguna Hills, CA 92653 Phone: (949) 348-9115 Fax: (949) 348-9115	Preservative	4°C	4°C	Date/Time: <u>i८-धन्त्रे त</u> ी:रे(Date/Time:
			Bottle Size	1L Amber Glass	40 mL Vial	
Analysis Request and Chain of Custody	SAN DIEGO AIRPORT	<i>From:</i> AMEC Environment & Infrastructure Attn: Amanda Archenhold 9177 Sky Park Court San Diego, CA 92123 Phone: (858) 278-3600 Fax: (858) 278-5300	SampleID Date Time Analyses	S-B06-12 11 21 13 11/21/13 0551 Particle Size Distribution	S-B06-12 11 21 13 11/21 / 13 0551 Ethylene glycol	Sampler's Initials: <u>A.C., A.W.</u> Relinquished By: <u>AVNA, Wer ner</u> Date/Time: <u>II 21/13</u> 13.20 Received By: <u>Act</u> Relinquished By:
				ξ.	Connerses Streemen	

书3(1363

				f 1 1			,].
# 13 10X3	, Suite 2A 92653 9389 15	Bottle Count		d		*enamore	JIIC .
H S	<i>To:</i> Sierra Analytical 26052 Merti Círcle, Suite 105 Laguna Hills, CA 92653 Phone: (949) 348-9389 Fax: (949) 348-9115	Preservative 4°C	4°C	4°C	4°C	4°C	Date/Time: <u>१५-१८-४ (७) (उ१ ८८</u> Date/Time:
	To: Sier 260 7105 Pho Pho Fax	Bottle Size 1L Clear Glass	1L Amber Glass	0.5 Gallon Plastic	1L Amber Glass	1L Clear Glass	Date
<u>Analysis Request and Chain of Custody</u>	From: AMEC Environment & Infrastructure Attn: Amanda Archenhold 9177 Sky Park Court San Diego, CA 92123 Phone: (858) 278-3500 Fax: (858) 278-5300	SampleID Date Time Analyses Oil & Grease	00, C-B07-6112112 1/13 0540 PCB	c-B07-6 $\frac{11}{2113}$ $\frac{11}{21}$ $\frac{11}{$	c-B07-6_1/21130540TPH (Jet fuel, diesel, motor oil)	C-BOT 6 11 2 1 1 2 1 1 2 1 1 2 0 5 4 0 01 & Grease	Sampler's Initials: AC, A. M. M. Date/Time: 11/21/13,13:13:20 Received By: Ketinquished By: Received By: Received By: Refinquished By: Page 7 of 8

# (21(3))	<u>I Chain of Custody</u>	AIRPORT	To: Sierra Analytical Sierra Analytical 26052 Merit Circle, Suite 105 Laguna Hills, CA 92653 Phone: (949) 348-9389 Fax: (949) 348-9115	Analyses Size Preservative Bottle Count	otor oil) 1L Amber 4°C Glass 4°C	PCB, Chlordane Lamberglass	Oil and Creeke leteergiass & bottle PAH contract lambergiass & bottle TPHCJetfueldiese lambergiass & bottle motor oil)	Received By: Second By: Date/Time: (Second By: Date/Time:) Date/Time:
	<u>Analysis Request and Chain of Custody</u>	SAN DIEGO AIRPORT	<i>From:</i> AMEC Environment & Infrastructure Attn: Amanda Archenhold 9177 Sky Park Court San Diego, CA 92123 Phone: (858) 278-3600 Fax: (858) 278-5300	SampleID Date Time	C-B 12-0A C-B1 2-0A	22 C-B-01-1A-112113 DUP 11/21/13 0520	E-B-01-1/A-112113 DUP 11/21/13 0520 C-B-01-1A-112113 DUP 11/21/13 0520 C-B-01-1A-112113 DUP 11/21/13 0520	Sampler's Initials: AC, AW Relinquished By: $ADDA, We (ACC Date/Time: U/2I/13' 13'2U Received By: Relinquished By: Date/Time: Date/Time: Received By: Page 8 of 8$

18 December 2013

Amanda Archenhold AMEC 9177 Sky Park Court Suite A San Diego, CA 92123

RE:San Diego Airport (2013) Work Order No.: 1311271

Attached are the results of the analyses for samples received by the laboratory on 11/22/13 13:00.

The samples were received by Sierra Analytical Labs, Inc. with a chain of custody record attached or completed at the submittal of the samples.

The analyses were performed according to the prescribed method as outlined by EPA, Standard Methods, and A.S.T.M.

The remaining portions of the samples will be disposed of within 30 days from the date of this report. If you require any additional retaining time, please advise us.

Sincerely,

R. forsyth

Richard K. Forsyth

Laboratory Director

Sierra Analytical Labs, Inc. is certified by the California Department of Health Services (DOHS), Environmental Laboratory Accredidation Program (ELAP) No. 2320.

S I E R R R A ANALYTICAL

AMEC	Project: San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	12/18/13 10:52

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
S-B06-12-112213	1311271-01	Liquid	11/22/13 12:09	11/22/13 13:00

AMEC	Project: San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	12/18/13 10:52

Conventional Chemistry Parameters by APHA/EPA Methods

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit		Dilution	Batch	Prepared	Analyzed	Method	Notes
S-B06-12-112213 (1311271-01) Liquid	Sampled: 11/22/	13 12:09	Received:	11/22/13	13:00				
Biochemical Oxygen Demand	2.40	2.00	mg/L	1	B3K2722	11/22/13	11/27/13 17:45	EPA 405.1	
Chemical Oxygen Demand	11.0	0.100	11	n	н	н	11/22/13 17:45	EPA 410.4	
Specific Conductance (EC)	128	0.100	µmhos/cm	н	н	17	н	EPA 120.1	
Total Hardness	41.6	0.400	mg/L	n	łł	17	n	SM 2340 C	
Hexane Extractable Material (HEM)	ND	2.00	11	8	11	11	н	EPA 1664	
pH	6.86	0.100	pH Units	11	ŧ	11	н	EPA 150.1	
Total Suspended Solids	4.00	1.00	mg/L	н	· N	н	11	EPA 160.2	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

26052 MERIT CIRCLE SUITE 105, LAGUNA HILLS, CALIFORNIA 92653 TELEPHONE: (949) 348-9389 Fax: (949) 348-9115 E-MAIL: SIERRALABS @ SIERRALABS.NET

9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	12/18/13 10:52

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit		Dilution	Batch	Prepared	Analyzed	Method	Notes
S-B06-12-112213 (1311271-01) Liquid	Sampled: 11/22	2/13 12:09	Received:	11/22/13	13:00	innedit et i			
Silver	ND	1.5	μg/L	1	B3K2518	11/25/13	11/25/13 19:52	EPA 200.8	
Aluminum	240	25	II.	н	11	9	н	II	
Arsenic	ND	3.0	11	п	H.	н	17	II.	
Cadmium	ND	2.0	н	н	11	н	n.		
Chromium	ND	3.0	н	II.	0	Ĥ	17	n	
Hexavalent Chromium	ND	0.0020	mg/L	11	B3K2209	11/22/13	11/26/13 19:41	EPA 218.6	
Copper	22	1.0	μg/L	11	B3K2518	11/25/13	11/25/13 19:52	EPA 200.8	
Iron	0.15	0.025	mg/L	n	н	11	n.	н	
Mercury	ND	0.00030	11	н	B3K2521	11/25/13	11/25/13 18:36	EPA 245,1	
Nickel	ND	5.0	μg/L	н	B3K2518	11/25/13	11/25/13 19:52	EPA 200.8	
Lead	7.3	1.0		н	н	"	11	11	
Zinc	12	1.0	U.	"	н	'n	11	11	

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nur	nber: [no	n Diego Ai ne] 1anda Arche	• •)13)		Reported 12/18/13-1	
	Metals (I	Dissolved) Sierra An	•			hods	, ·		
·	· · · • • • • • • • • • • • • • • • • •	Reporting	aryuca	1 L'abs, 11	it.				
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

S-B06-12-112213 (1311271-01) Liquid	Sampled: 11/2	2/13 12:09	Received: 1	1/22/13	13:00			
Silver	ND	1.5	μg/L	1	B3K2519	11/25/13	11/25/13 19:59	EPA 200.8
Arsenic	ND	3.0	н	8	11	11	11	н
Cadmium	ND	2.0	н	u.	n -	И	11	н
Hexavalent Chromium	ND	0.0020	mg/L	11	B3K2210	11/22/13	11/27/13 11:06	EPA 218.6
Copper	16	1.0	μg/L	11	B3K2519	11/25/13	11/25/13 19:59	EPA 200.8
Mercury	ND	0.00073	mg/L	п	B3K2520	11/25/13	11/25/13 18:35	EPA 245.1
Nickel	ND	5.0	μg/L	н	B3K2519	11/25/13	11/25/13 19:59	EPA 200.8
Lead	6.9	2.0	н	n	н	n.	12/17/13 13:30	н
Zinc	7.6	1.0		9	11	11	11/25/13 19:59	н

26052 MERIT CIRCLE SUITE 105, LAGUNA HILLS, CALIFORNIA 92653 TELEPHONE: (949) 348-9389 Fax: (949) 348-9115 E-MAIL: SIERRALABS @ SIERRALABS.NET

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	mber: [no	•	Airport (20 aenhold	13)		Reported 12/18/13 10	
		alent Chi Sierra Ar		•					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S-B06-12-112213 (1311271-01) Liquid	Sampled: 11/22	/13 12:09 I	Received	: 11/22/13	13:00				
Trivalent Chromium	ND	0.010	mg/L	1	B3K2211	11/22/13	11/27/13 11:10) Calculation	

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Reported: 12/18/13 10:52						
			by Calculatio ytical Labs, 1	•	lved)			
Analyte	Result	Reporting Limit 1	Jnits Dilution	Batch	Prepared	Analyzed	Method	Notes
S-B06-12-112213 (1311271-01) Liquid	Sampled: 11/22/	13 12:09 Rec	eived: 11/22/13	13:00		· · · · · · · · · · · · · · · · · · ·		•
Trivalent Chromium	ND	0.010 r	ng/L 1	B3K2212	11/22/13	11/27/13 11:0	9 Calculation	

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nu	mber: [n	an Diego A one] manda Arche		013)		Reported: 12/18/13 10:52			
	Metals by	EPA 200 S	eries M	ethods - Qu	uality C	ontrol					
		Sierra Ai	nalytica	al Labs, Ir	ıc.						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B3K2209 - EPA 200 Series											
Blank (B3K2209-BLK1)				Prepared:	11/22/13	Analyzed	: 11/26/13				
Hexavalent Chromium	ND	0.0020	mg/L	1							
Blank (B3K2209-BLK2)				Prepared:	11/22/13	Analyzed	: 11/26/13				
Hexavalent Chromium	ND	0.0020	mg/L						· · · ·		
LCS (B3K2209-BS1)				Prepared:	11/22/13	Analyzed	: 11/26/13				
Hexavalent Chromium	0.00270	0.0020	mg/L	0,00300		90.0	85-115				
LCS (B3K2209-BS2)				Prepared:	11/22/13	Analyzed	11/26/13				
Hexavalent Chromium	0.00297	0.0020	mg/L	0.00300		99.0	85-115				
Matrix Spike (B3K2209-MS1)	So	ırce: 131126	3_01	Prepared:	11/22/13	Analyzed	11/26/13				
Hexavalent Chromium	0.00284	0.0020	mg/L	0.00300	ND -	94.7	80-120				
Matrix Spike (B3K2209-MS2)	So	ırce: 131126	U	Proporade	11/22/12	Analuzad	: 11/26/13				
Hexavalent Chromium	0.00285	0.0020	mg/L	0.00300	ND	95.0	80-120				
Matrix Spike Dup (B3K2209-MSD1)		irce: 131126					: 11/26/13				
Hexavalent Chromium	0.00259	0.0020	ıng/L	0.00300	ND	86.3	80-120	9.21	20		
Matrix Spike Dup (B3K2209-MSD2)	Sou	ırce: 131126	2-05	Prepared:	11/22/13	Analyzed	: 11/26/13				
Hexavalent Chromium	0.00285	0.0020	mg/L	0.00300	ND	95.0	80-120	0.00	20		
Batch B3K2518 - EPA 200 Series											
Blank (B3K2518-BLK1)				Prepared &	& Analyz	ed: 11/25/	13		· · · · · · · · · · · · · · · · · · ·	denin en	
Aluminum	ND	25	μg/L								
Arsenic	ND	3.0	-11								

DIALIK (DSK2510-DLK1)				Prepared & Analyzed: 11/25/15
Aluminum	ND	25	μg/L	
Arsenic	ND	3.0	11	
Cadmium	ND	2.0	n [°]	
Chromium	ND	3.0	н	
Copper	ND	1.0	н	
lron	ND	0.025	mg/L	
Lead	ND	1.0	μg/L	
Nickel	ND	5.0		
Silver	ND	1.5	л	
Zinc	ND	1.0		

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Project Nur	nber: [no	n Diego A one] nanda Arch)13)			Reporte 12/18/13	
	Metals by F	EPA 200 Se	ries Me	thods - Q	uality Co	ontrol				
		Sierra An	alytica	l Labs, Iı	nc.					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3K2518 - EPA 200 Series							· .			
LCS (B3K2518-BS1)	K2518-BS1) Prepared & Analyzed: 11/25/13									
Aluminum	107	25	μg/L	100		107	85-115			
Arsenic	101	3.0	n.	100		101	85-115			
Cadmium	104	2.0	п	100		104	85-115			
Chromium	105	3.0	н	100		105	85-115			
Copper	110	1.0	II	100		110	85-115	•		
ron.	0.104	0.025	mg/L	0.100		104	85-115			
Lead	102	1.0	μg/L	100		102	85-115			
lickel	93.4	5.0	н	100		93.4	85-115			
Silver	102	1.5	st.	100		102	85-115			
Zinc	113	1.0	н	100		113	85-115			
Matrix Spike (B3K2518-MS1)	Sou	rce: 131127	1-01	Prepared	& Analyz	ed: 11/25/	13			
Aluminum	358	25	µg/L	100	240	118	70-130			
Arsenic	88.4 [.]	3.0	н	100	ND	88.4	70-130			
Cadmium	103	2.0	u	100	0.50	102	70-130			
Chromium	104	3.0	11	100	1.3	103	75-130			
Copper	127	1.0	u.	100	22	105	70-130			
ron	0.253	0.025	mg/L	0.100	0.15	103	70-130			
Lead	80.7	1.0	μg/L	100	7.3	73.4	70-130			
Nickel	. 103	5.0	н	100	ND	103	70-130		•	
Silver	100	1.5	н	100	ND	100	70-130			
Zinc	117	1.0	и	100	12	105	70-130			
Matrix Spike Dup (B3K2518-MSD1)	Sou	rce: 131127	1-01	Prepared	& Analyz	ed: 11/25/	'13			
Aluminum	362	25	μg/L	100	240	122	70-130	1.11	30	
Arsenic	84.0	3.0	н	100	ND	84.0	70-130	5.10	30	
Cadmium	104	2.0	н	100	0.50	104	70-130	0.966	30	
Chroinium	105	3.0	U.	100	1,3	104	75-130	0.957	30	
Copper	129	1.0	9	100	22	107	70-130	1.56	30	
Iron	0.255	0,025	mg/L	0.100	0.15	105	70-130	0.787	30	
Lead	87.4	1.0	μg/L	100	7.3	80,1	70-130	7.97	30	
Nickel	106	5.0	н	100	ND	106	70-130	2.87	30	
			н.	100	MD	104	70-130	3,92	30	
Silver	104	1.5		100	ND	104	/0-130	5,92	30	

26052 MERIT CIRCLE SUITE 105, LAGUNA HILLS, CALIFORNIA 92653 TELEPHONE: (949) 348-9389 Fax: (949) 348-9115 E-MAIL: SIERRALABS @ SIERRALABS.NET

Г

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Reported: 12/18/13 10:52								
	Metals by]	EPA 200 Se Sierra An		-	•	ontrol				
		Reporting		Spike	Source		%REC			
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	RPD Limit	Notes
Batch B3K2521 - EPA 200 Series										
Blank (B3K2521-BLK1)				Prepared	& Analyze	xd: 11/25/	13			
Mercury	ND	0.00030	mg/L							
LCS (B3K2521-BS1)				Prepared a	& Analyze	d: 11/25/	13			
Mercury	0.00081	0.00030	mg/L	0.00100		81.0	75-125			
Matrix Spike (B3K2521-MS1)	Sou	irce: 131127	1-01	Prepared a	& Analyze	d: 11/25/	13			
Mercury	0.00088	0.00030	ıng/L	0.00100	ND	88.0	75-125			
Matrix Spike Dup (B3K2521-MSD1)	Sou	irce: 131127	1-01	Prepared	& Analyze	ed: 11/25/	13			
Mercury	0.00092	0.00030	ıng/L	0.00100	ND	92.0	75-125	4,44	20	

AMEC 9177 Sky Park Court Suite A San Diego CA, 92123		Reported: 12/18/13 10:52								
Met	als (Dissolve	d) by EPA (Sierra An			-	lity Cont	rol			
									RPD	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	Limit	Notes
Batch B3K2210 - EPA 200 Series										
Blank (B3K2210-BLK1)				Prepared:	11/22/13	Analyzed	: 11/27/13			
-lexavalent Chromium	ND	0.0020	mg/L							
			-	D . 1	11/00/12	4.1.1	11/07/12			
LCS (B3K2210-BS1)	0.00000	0.0000		Prepared:	11/22/13				· · · · · · ·	
Hexavalent Chromium	0.00298	0.0020	ıng/L	0.00300		99.3	85-115			
Matrix Spike (B3K2210-MS1)	So	urce: 131126.	3-02	Prepared:	11/22/13	Analyzed	11/27/13			
Hexavalent Chromium	0.00300	0.0020	mg/L	0.00300	ND	100	80-120			
Matrix Spike Dup (B3K2210-MSD1)	So	urce: 131126.	3-02	Prepared:	11/22/13	Analyzed	: 11/27/13			
Hexavalent Chromium	0.00300	0.0020	mg/L	0.00300	ND	100	80-120	0.00	20	
Batch B3K2519 - EPA 200 Series Blank (B3K2519-BLK1)				Prepared	& Analyz	ed: 11/25/	13			
Arsenic	ND	3.0	μg/L							
Cadmium	ND	2.0	11							
Copper	ND	1.0	H H							
Lead	ND	2.0	· 11							
Nickel	ND	5.0	H							
Silver	ND ND	1.5 1.0								
Zinc	UPI	1.0								
LCS (B3K2519-BS1)				Prepared	& Analyz	ed: 11/25/	13			
Arsenic	109	3.0	μg/L	100		109	85-115			
Cadmium	106	2.0	H.	100		106	85-115			
Copper	110	1.0	9	100		110	85-115			
Lead	113	2.0	11	100		113	85-115			
NT:-11	105	5.0	н	100		105	85-115			
Nickel										
Nickei Silver Zinc	106 102	1.5 I.0	H H	100 100		106 102	85-115 85-115			

AMEC	Project: San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	12/18/13 10:52

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

Sierra Anal	ytical La	bs, Inc.
-------------	-----------	----------

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3K2519 - EPA 200 Series	<u>,</u>									
Matrix Spike (B3K2519-MS1)	Sou	rce: 131127	1-01	Prepared	& Analyze	ed: 11/25/	13			
Arsenic	79.1	3.0	μg/L	100	ND	79.1	70-130			
Cadmium	100	2.0	11	100	ND	100	70-130			
Copper	120	1.0	н	100	16	104	70-130			
Lead	110	2.0	n	100	6.9	103	70-130			
Nickel	100	5.0	н	100	ND	100	70-130			
Silver	102	1.5	н	100	ND	102	70-130			
Zinc	108	1.0	1 1	100	7.6	100	70-130			
Matrix Spike Dup (B3K2519-MSD1)	Sou	Source: 1311271-01			& Analyze					
Arsenic	85.0	3.0	μg/L	100	ND	85.0	70-130	7.19	30	
Cadmium	102	2,0	н	100	ND	102	70-130	1.98	30	
Copper	120	1.0	н.	100	16	104	70-130	0.00	30	
Lead	89.2	2.0	Й.	100	6.9	82.3	70-130	20.9	30	
Nickel	104	5.0	н	100	ND	104	70-130	3.92	30	
Silver	103	1.5	н	100	ND	103	70-130	0.976	30	
Zinc	107	1.0	н	100	7.6	99.4	70-130	0.930	30	
Batch B3K2520 - EPA 200 Series										
Blank (B3K2520-BLK1)				Prepared	& Analyze	ed: 11/25/	13			
Mercury	ND	0.00073	mg/L							
LCS (B3K2520-BS1)				Prepared	& Analyze	ed: 11/25/	13			
Мегсигу	0.00090	0.00073	mg/L	0.00100		90.0	80-120			
Matrix Spike (B3K2520-MS1)	Sou	rce: 131127	1-01	Prepared	& Analyze	ed: 11/25/	13			
Мегсшу	0.00094	0.00073	mg/L	0.00100	ND	94.0	80-120			

٢

AMECProject:San Diego Airport (2013)9177 Sky Park Court Suite AProject Number:[none]Reported:San Diego CA, 92123Project Manager:Amanda Archenhold12/18/13 10:52										
	Metals (Dissolve	d) by EPA (Sierra An			-	ity Cont	rol			
	••••	Reporting		Spike	Source	···· ·	%REC		RPD	

Matrix Spike Dup (B3K2520-MSD1) Source: 1311271-01			Prepared & Analyzed: 11/25/13					•		
Mercury	0.00093	0.00073	mg/L	0.00100	ND	93.0	80-120	1.07	20	

AMEC	Project: San Diego Airport (2013)	
9177 Sky Park Court Suite A	Project Number: [none]	Reported:
San Diego CA, 92123	Project Manager: Amanda Archenhold	12/18/13 10:52

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD '	Relative Percent Difference

Analysis Request and Chain of Custody	SAN DIEGO AIRPORT	To: Sierra Analytical 26052 Merit Circle, Suite 105 Laguna Hills, CA 92653 Phone: (949) 348-9389 Fax: (949) 348-9115	Bottle Bottle Bottle Analyses Count	pH, SC, TSS, total hardness, total (Al, As, Cd, Cu,Cr 19L 12). III, Cr VI, Fe, Pb, Hg, Ni, Ag, Zn), BOD, COD, O&G	PH, SC, TSS, total hardness, total (AI, As, Cd, Cu,Cr III, Cr VI, Fe, Pb, Hg, Ni, Ag, Zn), Dissolved (As, Cd, Cu,Cr III, Cr VI, Pb, Hg, Ni, Ag, Zn), BOD, COD, 076	PAHs 11 Amber 4°C Glass	PCB, Chlordane 1L Amber 4°C Glass	24 3 1300 Received By MAN Date/Time: 1/27/13 1300 121/13 1500 Received By Date/Time: 1/27/13 1300 Page 1 of 1 Page 1 of 1
Analysis R		<i>From:</i> AMEC Environment & Infrastructure Attn: Amanda Archenhold 9177 Sky Park Court San Diego, CA 92123 Phone: (858) 278-3600 Fax: (858) 278-5300	SampleID Date Time A		Ble S-BOG-12-212213 12 0 13 12 0 1	S-B06-12	S:B06-12P(Sampler's Initials: <u>A.W. A.C. L.X</u> Relinquished By: <u>AMA U.U. M. Date/Time: 11/24/3</u> Relinquished By: <u>S. M. Date/Time: 11/27/3</u>