Cultural Resources
HISTORIC RESOURCES STUDY FOR THE
PROPOSED AIRPORT DEVELOPMENT
PLAN PROJECT AT THE SAN DIEGO
INTERNATIONAL AIRPORT
CITY OF SAN DIEGO, CALIFORNIA

Preparer:
Brian F. Smith and Associates, Inc.
14010 Poway Road, Suite A
Poway, California 92064

Signature

Project Proponent:
San Diego County
Regional Airport Authority
3225 North Harbor Drive
San Diego, California 92101

June 8, 2018
Archaeological Database Information

Authors: Jennifer R.K. Stropes, M.S., RPA and Brian F. Smith, M.A.

14010 Poway Road, Suite A
Poway, California 92064
(858) 484-0915

Project Proponent: San Diego County Regional Airport Authority
3225 North Harbor Drive
San Diego, California 92101

Report Date: June 8, 2018

Report Title: Historic Resources Study for the Proposed Airport Development Plan Project at the San Diego International Airport, City of San Diego, California

Type of Study: Historic Resources Survey and Historic Structure Evaluation; Completed HABS/HAER Documentation

New Sites: P-37-036756 through P-37-036762

Updated Sites: P-37-015548 and P-37-028620

USGS Quadrangle: Point Loma, California (7.5 minute)

Acreage: 663.8 acres

Key Words: Survey; historic structures; San Diego International Airport; P-37-036757 through P-37-036762 evaluated as not significant with no adverse effect; P-37-036756 and P-37-028620 evaluated as significant historic resources under NRHP/CRHR Criterion A/1; P-37-015548 evaluated as a significant historic resource under NRHP/CRHR Criteria A/1, C/3, and D/4; HABS/HAER documentation completed for P-37-036756 and P-37-028620; HABS/HAER documentation completed for P-37-036757 as an addition to P-37-036756; no direct impacts or adverse effects to P-37-015548.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF ACRONYMS</td>
<td>...</td>
<td>xii</td>
</tr>
<tr>
<td>MANAGEMENT SUMMARY/ABSTRACT</td>
<td>...</td>
<td>xiii</td>
</tr>
<tr>
<td>1.0 INTRODUCTION</td>
<td>...</td>
<td>1.0–1</td>
</tr>
<tr>
<td>1.1 Project Description</td>
<td>...</td>
<td>1.0–1</td>
</tr>
<tr>
<td>1.2 Existing Conditions</td>
<td>...</td>
<td>1.0–5</td>
</tr>
<tr>
<td>1.2.1 Environmental Setting</td>
<td>...</td>
<td>1.0–5</td>
</tr>
<tr>
<td>1.2.2 History</td>
<td>...</td>
<td>1.0–9</td>
</tr>
<tr>
<td>1.2.3 Results of the Archaeological Records Search</td>
<td>...</td>
<td>1.0–32</td>
</tr>
<tr>
<td>1.3 Applicable Regulations</td>
<td>...</td>
<td>1.0–54</td>
</tr>
<tr>
<td>1.3.1 California Environmental Quality Act</td>
<td>...</td>
<td>1.0–54</td>
</tr>
<tr>
<td>1.3.2 Federal Significance Criteria</td>
<td>...</td>
<td>1.0–57</td>
</tr>
<tr>
<td>2.0 RESEARCH DESIGN</td>
<td>...</td>
<td>2.0–1</td>
</tr>
<tr>
<td>3.0 ANALYSIS OF PROJECT EFFECTS</td>
<td>...</td>
<td>3.0–1</td>
</tr>
<tr>
<td>3.1 Survey Methods</td>
<td>...</td>
<td>3.0–1</td>
</tr>
<tr>
<td>3.2 Survey Results</td>
<td>...</td>
<td>3.0–1</td>
</tr>
<tr>
<td>3.3 Resource Investigations</td>
<td>...</td>
<td>3.0–2</td>
</tr>
<tr>
<td>3.3.1 Site P-37-036756 – Terminal 1 (Potential Period of Significance 1967)</td>
<td>...</td>
<td>3.0–5</td>
</tr>
<tr>
<td>3.3.2 Site P-37-036757 – Terminal 2 East (Potential Period of Significance 1979)</td>
<td>...</td>
<td>3.0–53</td>
</tr>
<tr>
<td>3.3.3 Site P-37-036758 – Pacific Southwest Airlines Administrative and Maintenance Facility Building (Potential Period of Significance 1968 to 1987)</td>
<td>...</td>
<td>3.0–97</td>
</tr>
<tr>
<td>3.3.4 Site P-37-036759 – United Air Freight Building (Potential Period of Significance 1968)</td>
<td>...</td>
<td>3.0–119</td>
</tr>
<tr>
<td>3.3.5 Site P-37-036760 – Air Support Facilities Building (Potential Period of Significance 1970)</td>
<td>...</td>
<td>3.0–133</td>
</tr>
<tr>
<td>3.3.6 Site P-37-036761 – Air Oasis Hangar Building (Potential Period of Significance 1962 to 1964)</td>
<td>...</td>
<td>3.0–148</td>
</tr>
<tr>
<td>3.3.7 Site P-37-028620 – United Airlines Hangar and Terminal Building (Potential Period of Significance 1931 to 1952)</td>
<td>...</td>
<td>3.0–160</td>
</tr>
<tr>
<td>3.3.8 Site P-37-036762 – Jet Engine Overhaul Building (Potential Period of Significance 1956 to 1961)</td>
<td>...</td>
<td>3.0–186</td>
</tr>
</tbody>
</table>
Table of Contents (continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.9</td>
<td>Site P-37-015548 – Convair Wind Tunnel Building (Potential Period of Significance 1947)</td>
<td>3.0–201</td>
</tr>
<tr>
<td>4.0</td>
<td>INTERPRETATION OF RESOURCE IMPORTANCE AND IMPACT IDENTIFICATION</td>
<td>4.0–1</td>
</tr>
<tr>
<td>4.1</td>
<td>Resource Importance</td>
<td>4.0–1</td>
</tr>
<tr>
<td>4.2</td>
<td>Impact Identification</td>
<td>4.0–2</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Native American Heritage Values</td>
<td>4.0–2</td>
</tr>
<tr>
<td>5.0</td>
<td>MANAGEMENT CONSIDERATIONS – MITIGATION MEASURES AND DESIGN CONSIDERATIONS</td>
<td>5.0–1</td>
</tr>
<tr>
<td>5.1</td>
<td>Mitigable Impacts</td>
<td>5.0–1</td>
</tr>
<tr>
<td>5.2</td>
<td>Mitigation Measures and Significant Adverse Effects</td>
<td>5.0–1</td>
</tr>
<tr>
<td>5.3</td>
<td>Native American Heritage Resources/Traditional Properties</td>
<td>5.0–2</td>
</tr>
<tr>
<td>6.0</td>
<td>BIBLIOGRAPHY</td>
<td>6.0–1</td>
</tr>
<tr>
<td>7.0</td>
<td>LIST OF PREPARERS AND ORGANIZATIONS CONTACTED</td>
<td>7.0–1</td>
</tr>
</tbody>
</table>

Appendices

Appendix A – Resumes of Key Personnel
Appendix B – Updated Site Record Forms*
Appendix C – Archaeological Records Search Results*
Appendix D – NAHC Sacred Lands File Search*
Appendix E – Historic Documents
Appendix F – HABS/HAER Documentation

*Deleted for public review and bound separately in the Confidential Appendix
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1–1</td>
<td>General Location Map</td>
<td>1.0–2</td>
</tr>
<tr>
<td>Figure 1.1–2</td>
<td>Project Location Map (USGS)</td>
<td>1.0–3</td>
</tr>
<tr>
<td>Figure 1.1–3</td>
<td>Project Development Map</td>
<td>1.0–4</td>
</tr>
<tr>
<td>Figure 3.2–1</td>
<td>Historic Resource Location Map</td>
<td>3.0–3</td>
</tr>
<tr>
<td>Figure 3.2–2</td>
<td>Construction Date and Demolition Plan Map</td>
<td>3.0–4</td>
</tr>
<tr>
<td>Figure 3.3.1–1</td>
<td>Site Plan for Terminal 1, Site P-37-036756</td>
<td>3.0–8</td>
</tr>
<tr>
<td>Figure 3.3.2–1</td>
<td>Site Plan for Terminal 2 East, Site P-37-036757</td>
<td>3.0–56</td>
</tr>
<tr>
<td>Figure 3.3.3–1</td>
<td>Original 1966 Architectural Rendering of the PSA AMF Building</td>
<td>3.0–98</td>
</tr>
<tr>
<td>Figure 3.3.3–2</td>
<td>Site Plan for the PSA AMF Building, Site P-37-036758</td>
<td>3.0–103</td>
</tr>
<tr>
<td>Figure 3.3.4–1</td>
<td>Site Plan for the UAF Building, Site P-37-036759</td>
<td>3.0–123</td>
</tr>
<tr>
<td>Figure 3.3.5–1</td>
<td>Site Plan for the ASF Building, Site P-37-036760</td>
<td>3.0–134</td>
</tr>
<tr>
<td>Figure 3.3.6–1</td>
<td>Site Plan for the AOH Building, Site P-37-036761</td>
<td>3.0–149</td>
</tr>
<tr>
<td>Figure 3.3.7–1</td>
<td>1946 Sanborn Map, UAHT Building</td>
<td>3.0–162</td>
</tr>
<tr>
<td>Figure 3.3.7–2</td>
<td>Site Plan for the UAHT Building, Site P-37-028620</td>
<td>3.0–165</td>
</tr>
<tr>
<td>Figure 3.3.8–1</td>
<td>1956 Sanborn Map With Plotted Location of the JEO Building</td>
<td>3.0–187</td>
</tr>
<tr>
<td>Figure 3.3.8–2</td>
<td>Site Plan for the JEO Building, Site P-37-036762</td>
<td>3.0–189</td>
</tr>
<tr>
<td>Figure 3.3.9–1</td>
<td>1946 Sanborn Map Showing the CWT Building Still Under Construction</td>
<td>3.0–202</td>
</tr>
<tr>
<td>Figure 3.3.9–2</td>
<td>Site Plan for the CWT Building, Site P-37-015548</td>
<td>3.0–205</td>
</tr>
</tbody>
</table>

List of Plates

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 1.2–1</td>
<td>A stylized drawing of Lindbergh Field with the Spirit of Saint Louis and</td>
<td>1.0–20</td>
</tr>
<tr>
<td></td>
<td>Charles Lindbergh prominently featured</td>
<td></td>
</tr>
<tr>
<td>Plate 1.2–2</td>
<td>The San Diego Air Service hangar in 1930</td>
<td>1.0–21</td>
</tr>
</tbody>
</table>
List of Plates (continued)

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 1.2–3</td>
<td>Airtech hangar and the Pacific Air Transport/United Airlines Terminal</td>
<td>1.0–22</td>
</tr>
<tr>
<td></td>
<td>circa 1931 to 1932</td>
<td></td>
</tr>
<tr>
<td>Plate 1.2–4</td>
<td>United Airlines hangar and the terminal in 1934</td>
<td>1.0–22</td>
</tr>
<tr>
<td>Plate 1.2–5</td>
<td>Ryan School of Aeronautics buildings circa 1932</td>
<td>1.0–23</td>
</tr>
<tr>
<td>Plate 1.2–6</td>
<td>Consolidated Aircraft Corporation plant in November of 1935</td>
<td>1.0–24</td>
</tr>
<tr>
<td>Plate 3.3.1–1</td>
<td>Ground-breaking ceremonies in November of 1965 (left) and the</td>
<td>3.0–5</td>
</tr>
<tr>
<td></td>
<td>construction of the FAA air traffic controller observation point (right)</td>
<td></td>
</tr>
<tr>
<td>Plate 3.3.1–2</td>
<td>Then-California Governor Ronald Reagan speaking at the Terminal 1</td>
<td>3.0–6</td>
</tr>
<tr>
<td></td>
<td>dedication ceremony on February 8, 1967</td>
<td></td>
</tr>
<tr>
<td>Plate 3.3.1–3</td>
<td>1967 floor plan of Terminal 1</td>
<td>3.0–6</td>
</tr>
<tr>
<td>Plate 3.3.1–4</td>
<td>View of Terminal 1 (Section A) in 1967</td>
<td>3.0–7</td>
</tr>
<tr>
<td>Plate 3.3.1–5</td>
<td>1967 architect renderings of Terminal 1</td>
<td>3.0–8</td>
</tr>
<tr>
<td>Plate 3.3.1–6</td>
<td>View of the Primary (South) Façade of Section A, Facing East</td>
<td>3.0–9</td>
</tr>
<tr>
<td>Plate 3.3.1–7</td>
<td>One of the 18 Supporting Columns on the Primary (South) Façade of</td>
<td>3.0–10</td>
</tr>
<tr>
<td></td>
<td>Section A, Facing Northeast</td>
<td></td>
</tr>
<tr>
<td>Plate 3.3.1–8</td>
<td>1967 San Diego Union Cover Showing the Concrete Waffle-Slab Roof</td>
<td>3.0–11</td>
</tr>
<tr>
<td></td>
<td>System Under the Primary (South) Façade Roof Overhang of Section A,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Facing West</td>
<td></td>
</tr>
<tr>
<td>Plate 3.3.1–9</td>
<td>Current View of the Mixed Concrete Waffle-Slab and Vinyl Roof</td>
<td>3.0–11</td>
</tr>
<tr>
<td></td>
<td>System Under the Primary (South) Façade Roof Overhang of Section A,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Facing West</td>
<td></td>
</tr>
<tr>
<td>Plate 3.3.1–10</td>
<td>2015 View of the East Portion of the Primary (South) Façade of Section A</td>
<td>3.0–12</td>
</tr>
<tr>
<td></td>
<td>(Right) Showing the New Glass Wall of Fixed-Pane Windows, Facing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Northwest</td>
<td></td>
</tr>
<tr>
<td>Plate 3.3.1–11</td>
<td>View of Section B Extending Off the Primary (South) Façade of Section A</td>
<td>3.0–14</td>
</tr>
<tr>
<td></td>
<td>A, Facing West</td>
<td></td>
</tr>
<tr>
<td>Plate 3.3.1–12</td>
<td>View of the Two-Story Connecting Structure (Section B) on the Primary</td>
<td>3.0–16</td>
</tr>
<tr>
<td></td>
<td>(South) Façade of Section A, Facing West</td>
<td></td>
</tr>
<tr>
<td>Plate 3.3.1–13</td>
<td>View of the West Façade of Section A, Facing Northeast</td>
<td>3.0–17</td>
</tr>
<tr>
<td>Plate 3.3.1–14</td>
<td>View of Section C Leading From Terminal 1 to Terminal 2 East, Facing</td>
<td>3.0–18</td>
</tr>
<tr>
<td></td>
<td>Southwest</td>
<td></td>
</tr>
<tr>
<td>Plate 3.3.1–15</td>
<td>View of Section C Showing the Covered Walkway and International</td>
<td>3.0–19</td>
</tr>
<tr>
<td></td>
<td>Terminals, Facing Southwest</td>
<td></td>
</tr>
</tbody>
</table>
List of Plates (continued)

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 3.3.1–16</td>
<td>View of the West Façade of a 1967 Portion of Section A North of Section C, Facing East</td>
<td>3.0–20</td>
</tr>
<tr>
<td>Plate 3.3.1–17</td>
<td>View of the West Façade of Section D, Facing East</td>
<td>3.0–21</td>
</tr>
<tr>
<td>Plate 3.3.1–18</td>
<td>View of the North Façade of Section D, Facing South</td>
<td>3.0–22</td>
</tr>
<tr>
<td>Plate 3.3.1–19</td>
<td>View of the West Façade of the West Concourse Wing (Sections A and E), Facing East</td>
<td>3.0–23</td>
</tr>
<tr>
<td>Plate 3.3.1–20</td>
<td>View of the Northwest Façade of the Rotunda Portion of the West Concourse Wing (Sections A and E), Facing Southeast</td>
<td>3.0–24</td>
</tr>
<tr>
<td>Plate 3.3.1–21</td>
<td>View of the Jet Bridge Connection at Gate 11 on the East Façade of the Rotunda Portion of Sections A and E, Facing West</td>
<td>3.0–25</td>
</tr>
<tr>
<td>Plate 3.3.1–22</td>
<td>View of the North Façade of Section F, Facing South</td>
<td>3.0–26</td>
</tr>
<tr>
<td>Plate 3.3.1–23</td>
<td>View of the North Façade of the Original 1967 Projecting Bay on Section A (Right) and the Northwest Façade of Section G (Left), Facing Southeast</td>
<td>3.0–27</td>
</tr>
<tr>
<td>Plate 3.3.1–24</td>
<td>View of Section J Baggage Facilities on the North Façade of Section A, Facing Southeast</td>
<td>3.0–29</td>
</tr>
<tr>
<td>Plate 3.3.1–25</td>
<td>View of the West Façade of the Section A East Concourse Wing, Facing East</td>
<td>3.0–30</td>
</tr>
<tr>
<td>Plate 3.3.1–26</td>
<td>View of the West Façade of the Rotunda Portion of the East Concourse Wing (Sections A and H), Facing Southeast</td>
<td>3.0–31</td>
</tr>
<tr>
<td>Plate 3.3.1–27</td>
<td>View of the Sloped Driveway that Runs Under the Section A East Concourse Wing, Facing East</td>
<td>3.0–32</td>
</tr>
<tr>
<td>Plate 3.3.1–28</td>
<td>View of the Section J Office Between the North Façade of Section A (Left) and Section I (Right), Facing South</td>
<td>3.0–33</td>
</tr>
<tr>
<td>Plate 3.3.1–29</td>
<td>View of the East Façade of Section I, Facing South</td>
<td>3.0–34</td>
</tr>
<tr>
<td>Plate 3.3.1–30</td>
<td>View of the North Façade of Section I, Facing East</td>
<td>3.0–35</td>
</tr>
<tr>
<td>Plate 3.3.1–31</td>
<td>View of Section I on the East Façade of the Section A East Concourse Wing, Facing West</td>
<td>3.0–36</td>
</tr>
<tr>
<td>Plate 3.3.1–32</td>
<td>View of the North Façade of the Original 1967 Portion of Section A Between the Section J Office (Right) and Section K (Left), Facing South</td>
<td>3.0–37</td>
</tr>
<tr>
<td>Plate 3.3.1–33</td>
<td>View of Section K at the Northeast Corner of Section A (Right), Facing South</td>
<td>3.0–38</td>
</tr>
<tr>
<td>Plate 3.3.1–34</td>
<td>View of Gates 1 and 2 on the North Façade of Section K, Facing South</td>
<td>3.0–39</td>
</tr>
<tr>
<td>Plate 3.3.1–35</td>
<td>View of the South Façade of Section L, Facing Northeast</td>
<td>3.0–40</td>
</tr>
</tbody>
</table>
List of Plates (continued)

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 3.3.1–36</td>
<td>View of the North Façade of Section L, Facing South</td>
<td>3.0–41</td>
</tr>
<tr>
<td>Plate 3.3.1–37</td>
<td>Example of “Jetsons”-esque-style pillars</td>
<td>3.0–43</td>
</tr>
<tr>
<td>Plate 3.3.2–1</td>
<td>Frank L. Hope & Associates expansion plans for Lindbergh Field</td>
<td>3.0–53</td>
</tr>
<tr>
<td>Plate 3.3.2–2</td>
<td>Construction of Terminal 2 East in 1977</td>
<td>3.0–54</td>
</tr>
<tr>
<td>Plate 3.3.2–3</td>
<td>Terminal 2 (“West Terminal”) parking lot configuration and traffic flow in 1979</td>
<td>3.0–53</td>
</tr>
<tr>
<td>Plate 3.3.2–4</td>
<td>One of the 10 Concrete Support Columns on the Primary (South) Façade of Section A, Facing Northeast</td>
<td>3.0–53</td>
</tr>
<tr>
<td>Plate 3.3.2–5</td>
<td>View of the original cantilevered waffle-slab overhang on the primary (south) façade of Section A in 1979</td>
<td>3.0–57</td>
</tr>
<tr>
<td>Plate 3.3.2–6</td>
<td>Current View of the Mixed Concrete Waffle-Slab and Vinyl Roof System Under the Primary (South) Façade Roof Overhang of Section A, Facing West</td>
<td>3.0–59</td>
</tr>
<tr>
<td>Plate 3.3.2–7</td>
<td>View of the Primary (South) Façade of Section A, Facing West</td>
<td>3.0–60</td>
</tr>
<tr>
<td>Plate 3.3.2–8</td>
<td>View of the Primary (South) Façade of Section A, Facing Northeast</td>
<td>3.0–61</td>
</tr>
<tr>
<td>Plate 3.3.2–9</td>
<td>View of Section B Extending Off the Primary (South) Façade of Section A, Leading to the Covered Loading Zone Across Airport Terminal Road, Facing West</td>
<td>3.0–62</td>
</tr>
<tr>
<td>Plate 3.3.2–10</td>
<td>View of the Coffered Concrete Overhang and a Concrete Support Column on the West Façade of Section A, Facing Northeast</td>
<td>3.0–64</td>
</tr>
<tr>
<td>Plate 3.3.2–11</td>
<td>View of Section C (Center) Connecting the West Façade of Section A (Right) With the East Façade of Terminal 2 West (Left), Facing North</td>
<td>3.0–65</td>
</tr>
<tr>
<td>Plate 3.3.2–12</td>
<td>View of the North Façade of Section C Connecting the West Façade of Section A (Left) with the East Façade of Terminal 2 West (Right), Facing South</td>
<td>3.0–66</td>
</tr>
<tr>
<td>Plate 3.3.2–13</td>
<td>View of the West Façade of Section D (Left), Facing East</td>
<td>3.0–67</td>
</tr>
<tr>
<td>Plate 3.3.2–14</td>
<td>View of the North Façade of Section D, Facing Southeast</td>
<td>3.0–68</td>
</tr>
<tr>
<td>Plate 3.3.2–15</td>
<td>View of the West Façade of the Section A Concourse Wing at the Connection With the Main Terminal Building, Facing East</td>
<td>3.0–69</td>
</tr>
<tr>
<td>Plate 3.3.2–16</td>
<td>View of the Southern Portion of Section E, Facing Northeast</td>
<td>3.0–70</td>
</tr>
<tr>
<td>Plate 3.3.2–17</td>
<td>View of the Northern Portion of Section E, Facing East</td>
<td>3.0–71</td>
</tr>
<tr>
<td>Plate 3.3.2–18</td>
<td>View of Section F (Center) Between Section A (Right) and Section G (Left), Facing Northeast</td>
<td>3.0–72</td>
</tr>
<tr>
<td>Plate 3.3.2–19</td>
<td>View of the West Façade of Section G, Facing East</td>
<td>3.0–73</td>
</tr>
</tbody>
</table>
List of Plates (continued)

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 3.3.2–20</td>
<td>View of the Fixed-Pane Windows on the West Façade of Section G, Facing Northeast</td>
<td>3.0–74</td>
</tr>
<tr>
<td>Plate 3.3.2–21</td>
<td>View of the Original 1979 Westward Projection of the Section A Concourse Wing, Facing Northwest</td>
<td>3.0–76</td>
</tr>
<tr>
<td>Plate 3.3.2–22</td>
<td>View of the West Side of Section H, Facing South</td>
<td>3.0–77</td>
</tr>
<tr>
<td>Plate 3.3.2–23</td>
<td>View of the East Side of Section H, Facing South</td>
<td>3.0–78</td>
</tr>
<tr>
<td>Plate 3.3.2–24</td>
<td>View of the Original 1979 Eastward Projection of the Section A Concourse Wing, Facing South</td>
<td>3.0–79</td>
</tr>
<tr>
<td>Plate 3.3.2–25</td>
<td>View of the East Façade of Section I, Facing West</td>
<td>3.0–80</td>
</tr>
<tr>
<td>Plate 3.3.2–26</td>
<td>View of the East Façade of the Section A Concourse Wing Between Section I (Right) and Section J (Left), Facing West</td>
<td>3.0–81</td>
</tr>
<tr>
<td>Plate 3.3.2–27</td>
<td>View of the East Façade of the Original 1979 Portion of the Section A Concourse Wing, Facing Southwest</td>
<td>3.0–82</td>
</tr>
<tr>
<td>Plate 3.3.2–28</td>
<td>View of the North Façade of Section J, Facing South</td>
<td>3.0–83</td>
</tr>
<tr>
<td>Plate 3.3.2–29</td>
<td>View of the North and East Façades of Section J, Facing Southwest</td>
<td>3.0–84</td>
</tr>
<tr>
<td>Plate 3.3.2–30</td>
<td>View of the East Façade of Section J, Facing West</td>
<td>3.0–85</td>
</tr>
<tr>
<td>Plate 3.3.2–31</td>
<td>View of the North Façade of the Connector Wing Portion of Section J (Left), Facing West</td>
<td>3.0–86</td>
</tr>
<tr>
<td>Plate 3.3.3–1</td>
<td>1968 Advertisement for the PSA AMF Building Open House</td>
<td>3.0–99</td>
</tr>
<tr>
<td>Plate 3.3.3–2</td>
<td>1968 Aerial Photograph of the PSA AMF Building</td>
<td>3.0–100</td>
</tr>
<tr>
<td>Plate 3.3.3–3</td>
<td>View of the PSA AMF Hangar</td>
<td>3.0–101</td>
</tr>
<tr>
<td>Plate 3.3.3–4</td>
<td>2011 View of the Southwest Façade of the PSA AMF Building Turned Commuter Terminal, Facing North</td>
<td>3.0–104</td>
</tr>
<tr>
<td>Plate 3.3.3–5</td>
<td>View of the North Façade of the PSA AMF Building With the 1968 Hangar Removed, Facing Southwest</td>
<td>3.0–105</td>
</tr>
<tr>
<td>Plate 3.3.3–6</td>
<td>View of the South Façade of the PSA AMF Building Showing the 1996 Awning, Facing West</td>
<td>3.0–106</td>
</tr>
<tr>
<td>Plate 3.3.3–7</td>
<td>View of the Northwest Corner of the PSA AMF Building Showing the 1996 Windows, Facing South</td>
<td>3.0–107</td>
</tr>
<tr>
<td>Plate 3.3.3–8</td>
<td>View of the South Façade of the PSA AMF Building Showing the 1996 Windows, Facing Northeast</td>
<td>3.0–108</td>
</tr>
<tr>
<td>Plate 3.3.3–9</td>
<td>View of the South Façade of the PSA AMF Building Showing the 1996 Windows and Doors, Facing North</td>
<td>3.0–109</td>
</tr>
<tr>
<td>Plate 3.3.3–10</td>
<td>View of the East Façade of the PSA AMF Building, Facing Northwest</td>
<td>3.0–110</td>
</tr>
</tbody>
</table>
List of Plates (continued)

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 3.3.4–1</td>
<td>View of the west façade of the UAF building in 1968</td>
<td>3.0–119</td>
</tr>
<tr>
<td>Plate 3.3.4–2</td>
<td>Circa 1968 to 1972 Aerial View of the West Façade of the UAF Building</td>
<td>3.0–120</td>
</tr>
<tr>
<td>Plate 3.3.4–3</td>
<td>View of the West Façade of the UAF Building, Facing East</td>
<td>3.0–121</td>
</tr>
<tr>
<td>Plate 3.3.4–4</td>
<td>View of the South Façade of the UAF Building, Facing Northeast</td>
<td>3.0–124</td>
</tr>
<tr>
<td>Plate 3.3.4–5</td>
<td>View of the North Façade (Right) of the UAF Building, Facing West</td>
<td>3.0–125</td>
</tr>
<tr>
<td>Plate 3.3.4–6</td>
<td>View of the South and East Façades of the UAF Building, Facing Northwest</td>
<td>3.0–126</td>
</tr>
<tr>
<td>Plate 3.3.5–1</td>
<td>View of the North Façade of the ASF Building, Facing Southeast</td>
<td>3.0–135</td>
</tr>
<tr>
<td>Plate 3.3.5–2</td>
<td>View of the Loading Docks and Pedestrian Entrance Doors on the East Façade of the ASF Building, Facing West</td>
<td>3.0–136</td>
</tr>
<tr>
<td>Plate 3.3.5–3</td>
<td>View of the East Façade of the ASF Building, Facing Southwest</td>
<td>3.0–137</td>
</tr>
<tr>
<td>Plate 3.3.5–4</td>
<td>View of the Loading Docks and Pedestrian Entrance Doors on the West Façade of the ASF Building, Facing Southeast</td>
<td>3.0–138</td>
</tr>
<tr>
<td>Plate 3.3.5–5</td>
<td>View of the West Façade of the ASF Building, Facing East</td>
<td>3.0–139</td>
</tr>
<tr>
<td>Plate 3.3.5–6</td>
<td>View of the South Façade of the 1970 ASF Building (Left), Showing the Connection With the 1977 ASF Building, Facing East</td>
<td>3.0–140</td>
</tr>
<tr>
<td>Plate 3.3.5–7</td>
<td>View of the East Façade of the 1970 ASF Building (Right) Connected to the North Façade of the 1977 ASF Building (Left), Facing West</td>
<td>3.0–141</td>
</tr>
<tr>
<td>Plate 3.3.6–1</td>
<td>View of the East Façade of the AOH Building, Facing Southwest</td>
<td>3.0–150</td>
</tr>
<tr>
<td>Plate 3.3.6–2</td>
<td>View of the North Façade of the AOH Building, Facing West</td>
<td>3.0–151</td>
</tr>
<tr>
<td>Plate 3.3.6–3</td>
<td>View of the South Façade of the AOH Building, Facing Northwest</td>
<td>3.0–152</td>
</tr>
<tr>
<td>Plate 3.3.6–4</td>
<td>View of the West Façade of the AOH Building, Facing East</td>
<td>3.0–153</td>
</tr>
<tr>
<td>Plate 3.3.6–5</td>
<td>View of the Overhead Tracks on the West Façade of the AOH Building Extending North, Facing East</td>
<td>3.0–154</td>
</tr>
<tr>
<td>Plate 3.3.6–6</td>
<td>View of the Overhead Tracks on the West Façade of the AOH Building Extending South, Facing East</td>
<td>3.0–155</td>
</tr>
<tr>
<td>Plate 3.3.7–1</td>
<td>1930s Lindbergh Field postcard showing the UAHT building on Pacific Highway just under the wing of the Ryan aircraft</td>
<td>3.0–161</td>
</tr>
<tr>
<td>Plate 3.3.7–2</td>
<td>Circa 1951 Aerial Photograph of the Airport Buildings on Pacific Highway</td>
<td>3.0–163</td>
</tr>
<tr>
<td>Plate 3.3.7–3</td>
<td>Circa 1931 to 1932 photograph of what is currently the east façade of the UAHT building</td>
<td>3.0–166</td>
</tr>
<tr>
<td>Plate 3.3.7–4</td>
<td>View of the North Façade of the UAHT Building, Facing South</td>
<td>3.0–167</td>
</tr>
</tbody>
</table>
List of Plates (continued)

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 3.3.7–5</td>
<td>View of the Wood Plank Ceiling of the UAHT Building, Facing Southeast</td>
<td>3.0–168</td>
</tr>
<tr>
<td>Plate 3.3.7–6</td>
<td>View of the Tracks for the Sliding Hangar Doors on the UAHT Building, Facing Southeast</td>
<td>3.0–169</td>
</tr>
<tr>
<td>Plate 3.3.7–7</td>
<td>View of the Tracks for the Sliding Hangar Doors on the UAHT Building, Facing Northeast</td>
<td>3.0–170</td>
</tr>
<tr>
<td>Plate 3.3.7–8</td>
<td>View of the East Façade of the UAHT Building, Facing North</td>
<td>3.0–171</td>
</tr>
<tr>
<td>Plate 3.3.7–9</td>
<td>View of the Post-1952 Entry Door on the East Façade of the UAHT Building, Facing Southwest</td>
<td>3.0–172</td>
</tr>
<tr>
<td>Plate 3.3.7–10</td>
<td>1930s photograph of the UAHT building, showing the passenger corridor on the left side</td>
<td>3.0–173</td>
</tr>
<tr>
<td>Plate 3.3.7–11</td>
<td>1936 photograph of the UAHT building, showing the passenger corridor on the left side</td>
<td>3.0–173</td>
</tr>
<tr>
<td>Plate 3.3.7–12</td>
<td>View of the South Façade of the UAHT Building, Facing Northwest</td>
<td>3.0–174</td>
</tr>
<tr>
<td>Plate 3.3.7–13</td>
<td>Circa 1931 to 1941 photograph of the UAHT building showing the Terminal attached to the right side</td>
<td>3.0–175</td>
</tr>
<tr>
<td>Plate 3.3.7–14</td>
<td>Circa 1931 to 1941 photograph of the interior of the UAHT building showing the attached terminal and two entrance doors on the right side</td>
<td>3.0–175</td>
</tr>
<tr>
<td>Plate 3.3.7–15</td>
<td>View of the West Façade of the UAHT Building, Facing East</td>
<td>3.0–177</td>
</tr>
<tr>
<td>Plate 3.3.7–16</td>
<td>View of a Metal-Framed, Casement-Style Window on the West Façade of the UAHT Building, Facing East</td>
<td>3.0–178</td>
</tr>
<tr>
<td>Plate 3.3.7–17</td>
<td>View of the Two Aluminum-Framed Sliding Windows on the West Façade of the UAHT Building</td>
<td>3.0–178</td>
</tr>
<tr>
<td>Plate 3.3.8–1</td>
<td>1961 Aerial Photograph of Lindbergh Field Showing the JEO Building Highlighted in Red</td>
<td>3.0–188</td>
</tr>
<tr>
<td>Plate 3.3.8–2</td>
<td>View of the Primary (West) Façade of the JEO Building, Facing North</td>
<td>3.0–191</td>
</tr>
<tr>
<td>Plate 3.3.8–3</td>
<td>View of the South Façade of the JEO Building Showing Attached Signage, Facing East</td>
<td>3.0–192</td>
</tr>
<tr>
<td>Plate 3.3.8–4</td>
<td>View of the East Façade of the JEO Building Showing a Non-Original, Aluminum-Framed Glass Door, Facing West</td>
<td>3.0–193</td>
</tr>
<tr>
<td>Plate 3.3.8–5</td>
<td>View of the East Façade of the JEO Building Showing a Roll-Top Loading Dock Door, Facing North</td>
<td>3.0–194</td>
</tr>
<tr>
<td>Plate 3.3.8–6</td>
<td>View of the North Façade of the JEO Building Showing the Horizontal Band of Steel-Framed Windows, Facing Southeast</td>
<td>3.0–195</td>
</tr>
</tbody>
</table>
List of Plates (continued)

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 3.3.9–1</td>
<td>View of the CWT building under construction in 1945</td>
<td>3.0–201</td>
</tr>
<tr>
<td>Plate 3.3.9–2</td>
<td>Post-1948 View of the CWT Building</td>
<td>3.0–203</td>
</tr>
<tr>
<td>Plate 3.3.9–3</td>
<td>1953 aerial photograph of the CWT building (outlined in red)</td>
<td>3.0–204</td>
</tr>
<tr>
<td>Plate 3.3.9–4</td>
<td>1964 aerial photograph of the CWT building (outlined in red)</td>
<td>3.0–204</td>
</tr>
<tr>
<td>Plate 3.3.9–5</td>
<td>The CWT building circa 1955 to 1965</td>
<td>3.0–206</td>
</tr>
<tr>
<td>Plate 3.3.9–6</td>
<td>CWT building wind propellers at an unknown date</td>
<td>3.0–206</td>
</tr>
<tr>
<td>Plate 3.3.9–7</td>
<td>CWT building turning vanes in 1945</td>
<td>3.0–207</td>
</tr>
<tr>
<td>Plate 3.3.9–8</td>
<td>The CWT building control room in 1972</td>
<td>3.0–207</td>
</tr>
<tr>
<td>Plate 3.3.9–9</td>
<td>View of the North Façade of the CWT Building Showing Two Rows of Horizontal Windows, Facing West</td>
<td>3.0–209</td>
</tr>
<tr>
<td>Plate 3.3.9–10</td>
<td>View of the East Façade of the CWT Building, Facing Northwest</td>
<td>3.0–210</td>
</tr>
<tr>
<td>Plate 3.3.9–11</td>
<td>View of the South Façade of the CWT Building, Facing North</td>
<td>3.0–211</td>
</tr>
<tr>
<td>Plate 3.3.9–12</td>
<td>View of the Main Entrance to the CWT Building on the North Façade, Facing West</td>
<td>3.0–212</td>
</tr>
<tr>
<td>Plate 3.3.9–13</td>
<td>View of the Basement-Level Vehicle Entrance on the South Façade of The CWT Building, Facing Northeast</td>
<td>3.0–213</td>
</tr>
<tr>
<td>Plate 3.3.9–14</td>
<td>View of the North Façade of the CWT Building Power House, Facing South</td>
<td>3.0–214</td>
</tr>
<tr>
<td>Plate 3.3.9–15</td>
<td>View of the West and South Façades of the CWT Building Power House, Facing East</td>
<td>3.0–215</td>
</tr>
<tr>
<td>Plate 3.3.9–16</td>
<td>View of the Three-Story Addition on the South Façade of the CWT Building, Facing Northeast</td>
<td>3.0–216</td>
</tr>
</tbody>
</table>

List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.2–1</td>
<td>Archaeological Resources Located Within One Mile of the Project</td>
<td>1.0–33</td>
</tr>
<tr>
<td>Table 1.2–2</td>
<td>Archaeological Studies Within One Mile of the Project</td>
<td>1.0–37</td>
</tr>
<tr>
<td>Table 3.2–1</td>
<td>Historic Resources Identified Within the Project APE</td>
<td>3.0–2</td>
</tr>
<tr>
<td>Table 4.1–1</td>
<td>Evaluation Summary for Historic Resources Within the Project APE</td>
<td>4.0–1</td>
</tr>
</tbody>
</table>
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMF</td>
<td>Administrative and Maintenance Facility</td>
</tr>
<tr>
<td>AOH</td>
<td>Air Oasis Hangar</td>
</tr>
<tr>
<td>APE</td>
<td>Area of Potential Effect</td>
</tr>
<tr>
<td>APN</td>
<td>Assessor’s Parcel Number</td>
</tr>
<tr>
<td>ASF</td>
<td>Air Support Facilities</td>
</tr>
<tr>
<td>BFSA</td>
<td>Brian F. Smith and Associates, Inc.</td>
</tr>
<tr>
<td>CAA</td>
<td>Civil Aeronautics Administration</td>
</tr>
<tr>
<td>CAC</td>
<td>Consolidated Aircraft Corporation</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>CRHR</td>
<td>California Register of Historical Resources</td>
</tr>
<tr>
<td>CWT</td>
<td>Convair Wind Tunnel</td>
</tr>
<tr>
<td>DPR</td>
<td>(California) Department of Parks and Recreation</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>HABS</td>
<td>Historic American Building Survey</td>
</tr>
<tr>
<td>HAER</td>
<td>Historic American Engineering Record</td>
</tr>
<tr>
<td>JEO</td>
<td>Jet Engine Overhaul</td>
</tr>
<tr>
<td>LEED</td>
<td>Leadership in Energy and Environmental Design</td>
</tr>
<tr>
<td>LFA</td>
<td>Leigh Fisher & Associates</td>
</tr>
<tr>
<td>MCAS</td>
<td>Marine Corps Air Station</td>
</tr>
<tr>
<td>NAHC</td>
<td>Native American Heritage Commission</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NHPA</td>
<td>National Historic Preservation Act</td>
</tr>
<tr>
<td>NRHP</td>
<td>National Register of Historic Places</td>
</tr>
<tr>
<td>PAT</td>
<td>Pacific Air Transport</td>
</tr>
<tr>
<td>PRC</td>
<td>Public Resources Code</td>
</tr>
<tr>
<td>PSA</td>
<td>Pacific Southwest Airlines</td>
</tr>
<tr>
<td>RSA</td>
<td>Ryan School of Aeronautics</td>
</tr>
<tr>
<td>SCIC</td>
<td>South Coastal Information Center</td>
</tr>
<tr>
<td>SDCRAA</td>
<td>San Diego County Regional Airport Authority</td>
</tr>
<tr>
<td>SDIA</td>
<td>San Diego International Airport</td>
</tr>
<tr>
<td>SDSU</td>
<td>San Diego State University</td>
</tr>
<tr>
<td>SGPA</td>
<td>SGPA Architecture and Planning</td>
</tr>
<tr>
<td>SHPO</td>
<td>State Historic Preservation Office</td>
</tr>
<tr>
<td>SLF</td>
<td>Sacred Lands File</td>
</tr>
<tr>
<td>TSA</td>
<td>Transportation Security Administration</td>
</tr>
<tr>
<td>UAF</td>
<td>United Air Freight</td>
</tr>
<tr>
<td>UAHT</td>
<td>United Airlines Hangar and Terminal</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
<tr>
<td>USO</td>
<td>United Service Organizations</td>
</tr>
<tr>
<td>WPA</td>
<td>Works Progress Administration</td>
</tr>
<tr>
<td>YBP</td>
<td>Years Before the Present</td>
</tr>
</tbody>
</table>
MANAGEMENT SUMMARY/ABSTRACT

The following historic resources study was prepared to assess potential impacts to historic resources resulting from the proposed Airport Development Plan Project at the San Diego International Airport (SDIA). The proposed project will consist of the demolition and replacement of the existing Terminal 1 and Terminal 2 East buildings, modifications to Terminal 2 West, and a new on-airport access runway. Several air cargo and airline support buildings located east of the existing Terminal 1 building, as well as the former Commuter Terminal, would also be removed to accommodate the new Terminal 1 facility. Additional improvements would include the relocation of administrative and other airline support facilities, the construction of a new parking structure, and associated infrastructure updates.

The project is situated north of Harbor Drive and is bound by McCain Road to the west, West Laurel Street to the southeast, Pacific Highway to the east and northeast, and Admiral Boland Way and Guantanamo Street to the north, in the city of San Diego, San Diego County, California. The project is located in the former Pueblo Lands of San Diego, as shown on the 7.5-minute USGS Point Loma, California topographic quadrangle, Township 17 South, Range 3 West. The project includes Assessor’s Parcel Numbers (APNs) 760-005-10, -28 through -31, -33, -35 through -39, and -41; 760-006-05, -07, -08, -21, -45, and -47 through -51; 760-009-02, -04, and -05; 760-039-07, -08, -11, -12, -15, -17, -18, -19, -29, -38, -51, -53, -54, -56, -57, -58, -65, -66, and -67; 760-060-01 through -85; 760-061-01 through -69; and 760-062-01 through -05. The Area of Potential Effect (APE) is located on reclaimed tidelands where fill soil was deposited in the 1930s and 1940s during dredging of San Diego Bay.

This report has been prepared for submittal to the San Diego County Regional Airport Authority (SDCRAA) and the Federal Aviation Administration (FAA) to provide a historic resources analysis of the proposed project under review criteria listed in the California Environmental Quality Act (CEQA) and Section 106 of the National Historic Preservation Act (NHPA) of 1966. All investigations conducted by Brian F. Smith and Associates, Inc. (BFSA) related to this project conformed to the NHPA, Section 106, the National Environmental Policy Act (NEPA) of 1969, and CEQA.

To establish the historic resources inventory of the property, an archaeological survey and a records search were conducted of the areas designated as the APE within the Airport Development Plan. BFSA was retained to complete a Class I records search of a one-mile radius around the APE and a Class III intensive pedestrian archaeological survey of the APE to identify historic resources that could be affected by the implementation of the Airport Development Plan. The scope of work for this investigation included:

- A records search to acquire data regarding previously recorded archaeological sites on or near the APE;
- A systematic survey of the APE; and
• Efforts to locate and record any historic resources encountered within the APE. The scope of work performed by BFSA is consistent with CEQA, Section 106 of the NHPA, and the NEPA of 1969.

The purpose of this investigation was to locate and record any historic resources present within the project and subsequently evaluate the significance of any resources as part of the environmental review process conducted in compliance with CEQA and NEPA guidelines. The existing facility has had several different periods of construction, and therefore, this study will base the inventory of historic resources upon the minimum age threshold of 50 years old or older, as established by CEQA and the NHPA.

The archaeological investigation of the project included a review of an archaeological records search performed at the South Coastal Information Center (SCIC) at San Diego State University (SDSU) in order to assess previous archaeological studies and identify any previously recorded historic resources within the project boundaries or in the immediate vicinity. BFSA also requested a review of the Sacred Lands Files (SLF) by the Native American Heritage Commission (NAHC). The NAHC SLF search did not indicate the presence of any sacred sites or locations of religious or ceremonial importance within the search radius; however, the NAHC did indicate that the area is culturally sensitive. A copy of all Native American correspondence can be found in Appendix D.

A review of the records search provided by the SCIC indicates that 24 resources (P-37-015531 through P-37-015550, P-37-015552, P-37-015553, P-37-028620, and SDI-18,401) have been recorded within the project boundaries. One historic address (2340 Stillwater Road) is located within the project boundaries, an evaluation of which is included as part of this study (see Section 3.3.6). In addition, 25 cultural resource studies have included portions of the Airport Development Plan APE (Carrico 1977; Jacques and Carrico 1981; Olsen and Wade 1993; Schaefer 1994; Manley et al. 1994; Roth and Berryman 1995; Kyle and Phillips 1998; Crawford and Carrico 1995; KEA Environmental 1996; Wade 1990; City of San Diego 1993, 2013; Various n.d. [General Dynamics Facilities]; Robbins-Wade 2006; Robbins-Wade and Van Wormer 2006; Van Wormer 2006; Kim 2008; San Diego Unified Port District 2001; United States Marine Corps 1997; Groba 2012, 2013; Brunzelle 2015; Enriquez 2015; Garcia-Herbst 2015).

The SDIA Airport Development Plan will consist of different phases of demolition of existing buildings within the APE. Because demolition will take place in 2022, 2024/2025, 2030, and 2034, the CEQA/NHPA 50-year threshold for historic resources will differ depending upon when the buildings are planned for demolition. Historic properties to be affected by demolition of existing buildings during the construction phases represent four different age thresholds for historic consideration. These thresholds are:

• **Phase 1 – 2022:** Structures built before 1973 must be considered potentially historic;
• **Phase 1 – 2024/2025:** Structures built before 1975 must be considered potentially

• Phase 2 – 2030: Structures built before 1980 must be considered potentially historic.
• Phase 2 – 2034: Structures built before 1984 must be considered potentially historic.

The phases of demolition presented in the Airport Development Plan are illustrated on Figure 3.2–2.

Senior Project Archaeologist Jennifer Stropes and historic analyst Kimberly Ellis conducted the Class III pedestrian survey on September 5 and 8, 2017 under the direction of Principal Investigator Brian Smith. The survey of the APE resulted in the confirmation that nine historic structures are present, including P-37-036756 through P-37-036762, P-37-015548 and P-37-028620. Sites P-37-015548, P-37-028620, and P-37-036756 were determined eligible for listing on the California Register of Historical Resources (CRHR) and the National Register of Historic Places (NRHP). Site P-37-015548 (Convair wind tunnel), which will not be impacted by the proposed project, was determined to be significant under NRHP/CRHR Criteria A/1, C/3, and D/4. Sites P-37-028620 (United Airlines hangar and terminal) and P-37-036756 (Terminal 1), which are scheduled for demolition in 2022 and 2034, respectively, were determined to be significant under NRHP/CRHR Criterion A/1.

An impact study was conducted to determine if the project could be redesigned to avoid impacting sites P-37-028620 and P-37-036756, or if the buildings could be relocated. The study determined that there are no redesign or relocation alternatives, based upon financial constraints and the requirements necessary to achieve project feasibility. Because the two buildings were evaluated as eligible for listing on the NRHP and the CRHR, Historic American Building Survey/Historic American Engineering Record (HABS/HAER) documentation of the buildings was completed in order to fully document the resources and mitigate adverse effects to those resources prior to their demolition. Although Site P-37-036757 is not significant under any NRHP or CRHR criteria, because it was designed as an addition to and constructed to mimic the design and materials of P-37-036756, it was documented along with P-37-036756 before their demolition in 2034. The HABS/HAER documentation is provided in Appendix F of this report.

A copy of the final technical report will be permanently filed with the SCIC at SDSU. All notes, photographs, and other materials related to this project will be curated at the archaeological laboratory of BFSA in Poway, California.
1.0 INTRODUCTION

1.1 Project Description

This historic resources study was conducted in order to comply with the SDCRAA and FAA’s requirement to provide a historic resources inventory and impact analysis as part of the CEQA and NEPA review of the SDIA Airport Development Plan Project. All investigations were consistent with CEQA, NEPA, and Section 106 of the NHPA. The subject property currently functions as the SDIA and is located immediately north of Harbor Drive, bound by McCain Road to the west, West Laurel Street to the southeast, Pacific Highway to the east and northeast, and Admiral Boland Way and Guantanamo Street to the north, in the city of San Diego, San Diego County, California (Figure 1.1–1). The project is located in the former Pueblo Lands of San Diego as depicted on the 7.5-minute USGS Point Loma, California topographic quadrangle, Township 17 South, Range 3 West (Figure 1.1–2), and includes APNs 760-005-10, -28 through -31, -33, -35 through -39, and -41; 760-006-05, -07, -08, -21, -45, and -47 through -51; 760-009-02, -04, and -05; 760-039-07, -08, -11, -12, -15, -17, -18, -19, -29, -38, -51, -53, -54, -56, -57, -58, -65, -66, and -67; 760-060-01 through -85; 760-061-01 through -69; and 760-062-01 through -05.

The proposed project will consist of the demolition and replacement of the existing Terminal 1 and Terminal 2 East buildings, modifications to Terminal 2 West, and a new on-airport access road. The former Commuter Terminal, which now houses the SDCRAA administrative offices, and several air cargo and airline support buildings located east of the existing Terminal 1 building would also be removed and demolished to accommodate the new Terminal 1 facility (Figure 1.1–3).

The new Terminal 1 facility will be an approximately 1,110,00-square-foot, three-story, 30-gate, contemporary structure designed with environmental performance and sustainability in mind. The new Terminal 1 facility will include a potential commercial development, providing amenities such as a hotel, conference facilities, and expanded visitor-serving concessions; however, the potential commercial development has not yet been designed.

The modifications to Terminal 2 will include adding a 450,000-square-foot, three-story, seven-gate concourse to Terminal 2 West and demolishing the existing 350,000-square-foot Terminal 2 East building and replacing it with a new 250,000-square-foot, three-story concourse that will connect Terminal 2 West to the new Terminal 1 facility.

Overall, the proposed project will increase the total number of gates at the SDIA from 51 to 61. Additional improvements would include the relocation of administrative and other airline support facilities, the construction of a new parking structure, and associated infrastructure updates.
Figure 1.1-1
General Location Map
The SDIA Airport Development Plan Project
DeLorme (1:250,000)
Figure 1.1–2
Project Location Map
The SDIA Airport Development Plan Project
USGS La Jolla and Point Loma Quadrangles (7.5-minute series)
Figure 1.1–3
Project Development Map
The SDIA Airport Development Plan Project
1.2 Existing Conditions

1.2.1 Environmental Setting

Natural Setting

The project is situated on the west side of the downtown area of the city of San Diego, California. The project lies on dredged fill overlaying upper Quaternary sediments assigned to the Bay Point Formation (Stroh 2001). The Bay Point Formation represents San Diego Bay and Mission Bay sediments that were deposited during the peak of the last interglacial episode, about 120,000 years before the present (YBP). These sediments continued to be deposited and eventually became the mudflats that were present along the shore of the bay after sea levels rose to their current elevation approximately 7,000 YBP.

Cultural Setting

In prehistoric times, both Archaic and Late Prehistoric peoples used this area. By Late Prehistoric times, a small wetland had developed where Switzer Creek entered San Diego Bay (about Tenth Avenue). This wetland and the marine resources available in the bay made up a rich and varied food resource that was less subject to the debilitating effects of limited seasonal rainfall than the inland areas of San Diego. At the time of the first European colonization (1769) and for a period of time thereafter, Native Americans used resources found in the bay and in adjacent wetland areas (Gallegos and Kyle 1988). Early urban development of the area precluded any accurate assessment of prehistoric human use of this part of San Diego, but recent studies around the bay present a glimpse of what the settlement pattern might have been (Carrico 1991; Smith 1993).

The cultures that have been identified in the general vicinity of the project consist of a possible Paleo Indian manifestation of the San Dieguito Complex, the Archaic and Early Milling Stone horizons represented by the La Jolla Complex, and the Late Prehistoric Kumeyaay culture. The area was used for ranching and farming following the Hispanic intrusion into the region and extending into the historic period. A brief discussion of the cultural elements in the project area is provided below.

Paleoenvironment

Because of the close relationship between prehistoric settlement and subsistence patterns and the environment, it is necessary to understand the setting in which these systems operated. At the end of the final period of glaciation, approximately 10,000 to 11,000 YBP, the sea level was considerably lower than it is now; the coastline at that time would have been two to two and a half miles west of its present location (Smith and Moriarty 1985a, 1985b). At approximately 7,000 YBP, the sea level rose rapidly, filling in many coastal canyons that had been dry during the glacial period. The period between 7,000 and 4,000 YBP was characterized by conditions that were drier and warmer than they had been previously, followed by a cooler, moister environment similar to the present-day climate (Robbins-Wade 1990). Changes in sea level and coastal topography are
often manifested in archaeological sites through the types of shellfish that were utilized by prehistoric groups. Different species of shellfish prefer certain types of environments, and dated sites that contain shellfish remains reflect the setting that was exploited by the prehistoric occupants.

Unfortunately, pollen studies have not been conducted for this area of San Diego, but studies in other areas of southern California, such as Santa Barbara, indicate that the coastal plains supported a pine forest between approximately 12,000 and 8,000 YBP (Robbins-Wade 1990). After 8,000 YBP, this environment was replaced by more open habitats, which supported oak and non-arboreal communities. The coastal sage scrub and chaparral environments of today appear to have become dominant after 2,200 YBP (Robbins-Wade 1990).

Prehistory

In general, the prehistoric record of San Diego County has been documented in many reports and studies, several of which represent the earliest scientific works concerning the recognition and interpretation of the archaeological manifestations present in this region. Geographer Malcolm Rogers initiated the recordation of sites in the area during the 1920s and 1930s, using his field notes to construct the first cultural sequences based upon artifact assemblages and stratigraphy (Rogers 1966). Subsequent scholars expanded the information gathered by Rogers and offered more academic interpretations of the prehistoric record. Moriarty (1966, 1967, 1969), Warren (1964, 1966), and True (1958, 1966) all produced seminal works that critically defined the various prehistoric cultural phenomena present in this region (Moratto 1984). Additional studies have sought to further refine these earlier works (Cardenas 1986; Moratto 1984; Moriarty 1966, 1967; True 1970, 1980, 1986; True and Beemer 1982; True and Pankey 1985; Waugh 1986). In sharp contrast, the current trend in San Diego prehistory has also resulted in a revisionist group that rejects the established cultural historical sequence for San Diego. This revisionist group (Warren et al. 1998) has replaced the concepts of La Jolla, San Dieguito, and all of their other manifestations with an extensive, all-encompassing, chronologically undifferentiated cultural unit that ranges from the initial occupation of southern California to around A.D. 1000 (Bull 1983, 1987; Ezell 1983, 1987; Gallegos 1987; Kyle et al. 1990; Stropes 2007). For the present study, the prehistory of the region is divided into four major periods: Early Man, Paleo Indian, Early Archaic, and Late Prehistoric.

Early Man Period (Prior to 8500 B.C.)

At the present time, there has been no concrete archaeological evidence to support the occupation of San Diego County prior to 10,500 YBP. Some archaeologists, such as Carter (1957, 1980) and Minshall (1976), have been proponents of Native American occupation of the region as early as 100,000 years ago. However, their evidence for such claims is sparse at best and they’ve lost much support over the years as more precise dating techniques have become available for skeletal remains thought to represent early man in San Diego. In addition, many of the “artifacts”
initially identified as products of early man in the region have since been rejected as natural products of geologic activity. Some of the local proposed Early Man Period sites include Texas Street, Buchanan Canyon, Brown, Mission Valley (San Diego River Valley), Del Mar, and La Jolla (Bada et al. 1974; Carter 1957, 1980; Minshall 1976, 1989; Moriarty and Minshall 1972; Reeves 1985; Reeves et al. 1986).

Paleo Indian Period (8500 to 6000 B.C.)

For the region, it is generally accepted that the earliest identifiable culture in the archaeological record is represented by the material remains of the Paleo Indian Period San Dieguito Complex. The San Dieguito Complex was thought to represent the remains of a group of people who occupied sites in this region between 10,500 and 8,000 YBP, and who were related to or contemporaneous with groups in the Great Basin. As of yet, no absolute dates have been forthcoming to support the great age attributed to this cultural phenomenon. The artifacts recovered from San Dieguito Complex sites duplicate the typology attributed to the Western Pluvial Lakes Tradition (Moratto 1984; Davis et al. 1969). These artifacts generally include scrapers, choppers, large bifaces, and large projectile points, with few milling tools. Tools recovered from San Dieguito Complex sites, along with the general pattern of their site locations, led early researchers to believe that the people of the San Dieguito Complex were a wandering hunter/gatherer society (Moriarty 1969; Rogers 1966).

The San Dieguito Complex is the least understood of the cultures that have inhabited the San Diego County region. This is due to an overall lack of stratigraphic information and/or datable materials recovered from sites identified as belonging to the San Dieguito Complex. Currently, controversy exists among researchers regarding the relationship between the San Dieguito Complex and the subsequent cultural manifestation in the area, the La Jolla Complex. However, firm evidence has not been recovered to indicate whether the San Dieguito Complex “evolved” into the La Jolla Complex, the people of the La Jolla Complex moved into the area and assimilated with the people of the San Dieguito Complex, or the people of the San Dieguito Complex retreated from the area because of environmental or cultural pressures.

Early Archaic Period (6000 B.C. to A.D. 0)

Based upon evidence suggesting climatic shifts and archaeologically observable changes in subsistence strategies, a new cultural pattern is believed to have emerged in the San Diego region around 6000 B.C. Archaeologists believe that this Archaic Period pattern evolved from or replaced the San Dieguito Complex culture, resulting in a pattern referred to as the Encinitas Tradition. In San Diego, the Encinitas Tradition is believed to be represented by the coastal La Jolla Complex and its inland manifestation, the Pauma Complex. The La Jolla Complex is best recognized for its pattern of shell middens and grinding tools closely associated with marine resources and flexed burials (Shumway et al. 1961; Smith and Moriarty 1985a). Increasing numbers of inland sites have been identified as dating to the Archaic Period, focusing upon terrestrial subsistence
The SDIA Airport Development Plan Project

1.0–8

(Cardenas 1986; Smith 1996; Raven-Jennings and Smith 1999a, 1999b).

The tool typology of the La Jolla Complex displays a wide range of sophistication in the lithic manufacturing techniques used to create the tools found at their sites. Scrapers, the dominant flaked tool type, were created by either splitting cobbles or by finely flaking quarried material. Evidence suggests that after about 8,200 YBP, milling tools began to appear in La Jolla Complex sites. Inland sites of the Encinitas Tradition (Pauma Complex) exhibit a reduced quantity of marine-related food refuse and contain large quantities of milling tools and food bone. The lithic tool assemblage shifts slightly to encompass the procurement and processing of terrestrial resources, suggesting seasonal migration from the coast to the inland valleys (Smith 1996). At the present time, the transition from the Archaic Period to the Late Prehistoric Period is not well understood. Many questions remain concerning cultural transformation between periods, possibilities of ethnic replacement, and/or a possible hiatus from the western portion of the county.

Late Prehistoric Period (A.D. 0 to 1769)

The transition into the Late Prehistoric Period in the project area is primarily represented by a marked change in archaeological patterning known as the Yuman Tradition. This tradition is primarily represented by the Cuyamaca Complex, which is believed to be derived from the mountains of southern San Diego County. The people of the Cuyamaca Complex are considered ancestral to the ethnohistoric Kumeyaay (Diegueño). Although several archaeologists consider the local Native American tribes to be relatively latecomers, the traditional stories and histories passed down through oral tradition by local Native American groups speak both presently and ethnographically to their presence here as since the time of creation.

The Kumeyaay Native Americans were a seasonal hunting and gathering people with cultural elements that were very distinct from the people of the La Jolla Complex. Noted variations in material culture include cremation, the use of the bow and arrow, and adaptation to the use of the acorn as a main food staple (Moratto 1984). Along the coast, the Kumeyaay made use of marine resources by fishing and collecting shellfish for food. Seasonally available plant food resources (including acorns) and game were sources of nourishment for the Kumeyaay. By far, the most important food resource for these people was the acorn. The acorn represented a storable surplus, which in turn allowed for seasonal sedentism and its attendant expansion of social phenomena.

Firm evidence has not been recovered to indicate whether the people of the La Jolla Complex were present when the Kumeyaay Native Americans migrated into the coastal zone. However, stratigraphic information recovered from Site SDI-4609 in Sorrento Valley may suggest a hiatus of 650 ± 100 years between the occupation of the coastal area by the La Jolla Complex (1,730 ± 75 YBP is the youngest date for the La Jolla Complex inhabitants at SDI-4609) and Late Prehistoric cultures (Smith and Moriarty 1983). More recently, a reevaluation of two prone burials at the Spindrift Site excavated by Moriarty (1965) and radiocarbon dates of a pre-ceramic phase of Yuman occupation near Santee suggest a commingling of the latest La Jolla Complex
inhabitants and the earliest Yuman inhabitants about 2,000 YBP (Kyle and Gallegos 1993).

1.2.2 History

Exploration Period (1530 to 1769)

The historic period around San Diego Bay began with the landing of Juan Rodríguez Cabrillo and his men in 1542 (Chapman 1921). Sixty years after the Cabrillo expeditions (1602 to 1603), Sebastian Vizcaíno made an extensive and thorough exploration of the Pacific coast. Although the voyage did not extend beyond the northern limits of the Cabrillo track, Vizcaíno had the most lasting effect on the nomenclature of the coast. Many of the names he gave to various locations have survived, whereas nearly every one of Cabrillo’s has faded from use. Cabrillo gave the name “San Miguel” to the first port at which he stopped in what is now the United States; 60 years later, Vizcaíno changed it to “San Diego” (Rolle 1969).

Spanish Colonial Period (1769 to 1821)

The Spanish occupation of the claimed territory of Alta California took place during the reign of King Carlos III of Spain (Engelhardt 1920). José de Gálvez, a powerful representative of the king in Mexico, conceived the plan to colonize Alta California and thereby secure the area for the Spanish Crown (Rolle 1969). The effort involved military and religious components, where the overall intent of establishing forts and missions was to gain control of the land and the native inhabitants through conversion. Actual colonization of the San Diego area began on July 16, 1769, when a Spanish exploration party commanded by Gaspar de Portolá (with Father Junípero Serra in charge of religious conversion of the native populations) arrived by the overland route to San Diego to secure California for the Spanish Crown (Palou 1926). The natural attraction of the harbor at San Diego and the establishment of a military presence in the area solidified the importance of San Diego to the Spanish colonization of the region and the growth of the civilian population.

Missions were constructed from San Diego to as far north as San Francisco. The mission locations were based upon a number of important territorial, military, and religious considerations. Grants of land were made to those who applied, but many tracts reverted back to the government due to lack of use. As an extension of territorial control by the Spanish Empire, each mission was placed so as to command as much territory and as large a population as possible. While primary access to California during the Spanish Period was by sea, the route of El Camino Real served as the land route for transportation, commercial, and military activities within the colony. This route was considered to be the most direct path between the missions (Rolle 1969; Caughey 1970). As increasing numbers of Spanish and Mexican peoples, as well as the later Americans during the Gold Rush, settled in the area, the Native American populations diminished as they were displaced or decimated by disease (Carrico and Taylor 1983).
Mexican Period (1821 to 1846)

Father Miguel Hidalgo y Costilla and a group of Native American followers began a revolt against Spanish rule on September 16, 1810. Hidalgo did not succeed in the fight against the Spanish, and was ultimately executed. However, the revolt continued and the Spanish were finally defeated in 1821. Mexican Independence Day is celebrated on September 16 of each year in honor of Father Hidalgo’s bravery. The revolution also had repercussions in the northern territories, and by 1834, all of the mission lands in Alta California had been removed from the control of the Franciscan Order under the Acts of Secularization. Without proper maintenance, the missions quickly began to disintegrate. After 1836, missionaries ceased to make regular visits to the outlying Native American communities to minister their needs (Engelhardt 1920). Large tracts of land continued to be granted to persons who applied or who had gained favor with the Mexican government. Grants of land were also made to settle government debts and the Mexican government was called upon to reaffirm some older Spanish land grants shortly before the Mexican-American War in 1846 (Moyer 1969).

Anglo-American Period (1846 to Present)

California was invaded by United States troops during the Mexican-American War from 1846 to 1848. The acquisition of strategic Pacific ports and California land was one of the principal objectives of the war (Price 1967). At the time, the inhabitants of California were practically defenseless, and they quickly surrendered to the United States Navy in July of 1847 (Bancroft 1886).

The cattle ranchers of the “counties” of southern California prospered during the cattle boom of the early 1850s. They were able to “reap windfall profit … pay taxes and lawyer’s bills … and generally live according to custom” (Pitt 1966). However, cattle ranching soon declined, contributing to the expansion of agriculture. With the passage of the “No Fence Act,” San Diego’s economy shifted from stock raising to farming (Robinson 1948). The act allowed for the expansion of unfenced farms, which was crucial in an area where fencing material was practically unavailable. Five years after its passage, most of the arable lands in San Diego County had been patented as either ranchos or homesteads, and growing grain crops replaced raising cattle in many of the county’s inland valleys (Blick 1976; Elliott 1965).

By 1870, farmers had learned to dry farm and were coping with some of the peculiarities of San Diego County’s climate (*San Diego Union*, February 6, 1868; Van Dyke 1886). Between 1869 and 1871, the amount of cultivated acreage in the county rose from less than 5,000, to more than 20,000, acres (*San Diego Union*, January 2, 1872). Of course, droughts continued to hinder the development of agriculture (Crouch 1915; *San Diego Union*, November 10, 1870; Shipek 1977). Large-scale farming in San Diego County was limited by a lack of water and the small size of arable valleys. The small urban population and poor roads also restricted commercial crop growing. Meanwhile, cattle continued to be grazed in parts of inland San Diego County. In the Otay Mesa area, for example, the “No Fence Act” had little effect on cattle farmers because ranches

1.0–10
were spaced far apart and natural ridges kept the cattle out of nearby growing crops (Gordinier 1966).

During the first two decades of the twentieth century, the population of San Diego County continued to grow. The population of the inland portion of the county declined during the 1890s, but between 1900 and 1910, it rose by about 70 percent. The pioneering efforts were over, the railroads had broken the relative isolation of southern California, and life in San Diego County became similar to other communities throughout the west. After World War I, the history of San Diego County was primarily determined by the growth of San Diego Bay. In 1919, the United States Navy decided to make the bay the home base for the Pacific Fleet (Pourade 1967), as did the aircraft industry in the 1920s (Heiges 1976). The establishment of these industries led to the growth of the county as a whole; however, most of the civilian population growth occurred in the coastal areas in the northern portion of the county where the population almost tripled between 1920 and 1930. During this time period, the history of inland San Diego County was subsidiary to that of the city of San Diego, which had become a Navy center and an industrial city (Heiges 1976). In inland San Diego County, agriculture became specialized and recreational areas were established in the mountain and desert areas. Just before World War II, urbanization began to spread to the inland parts of the county.

General History of the City of San Diego

Juan Rodriguez Cabrillo, commanding two Spanish exploring vessels traveling north from Mexico, arrived in the area known then as Alta (or “Upper”) California on September 28, 1542. Cabrillo named the harbor they arrived at “San Miguel” (Bolton 1959). The next arrival into the San Diego area by Europeans was not for another 60 years, when an expedition commanded by Sebastian Vizcaíno made an extensive and thorough exploration of the Pacific coast and arrived at the bay in November of 1602 (Engstrand 1980). It was during this visit that Vizcaíno renamed the bay “San Diego” (Rolle 1969). Cabrillo’s voyage gave cartographers the information they needed to begin defining the western shores of the unknown land located north of Mexico. Subsequent voyages added details to Cabrillo’s information that, in time, permitted mapmakers to accurately depict the west coast.

For the next 167 years following Vizcaíno’s voyage, the Spanish made no other expeditions to Alta California. The Spanish eventually developed a plan for the occupation of the claimed territory of Alta California during the reign of King Carlos III of Spain. In 1769, a joint sea and land expedition set out from Mexico to meet up at San Diego Bay; Captain Vicente Vila led three ships and Gaspar de Portolá and Father Junípero Serra commanded the land expedition (Rolle 1969). Actual colonization of the San Diego area began on July 16, 1769 (Palou 1926). Only two of the three ships commanded by Captain Vila made it to San Diego; it is believed that they anchored near what is now downtown San Diego, and that “Punta de los Muertos,” or “Dead Man’s Point” (an area located near the west end of H Street), derived its name from the burial of scurvy-stricken sailors at that location (MacMullen 1969).
The natural attraction of the harbor at San Diego and the establishment of a military presence in the area solidified the importance of San Diego to the Spanish colonization of the region and the growth of the civilian population. The initial colonization of San Diego began with the establishment of the Presidio of San Diego and Mission San Diego de Alcalá on Mission Hill overlooking Mission Bay and the San Diego River to the north. The location was chosen for its commanding view, defensive location, and proximity to a large Native American village located directly north of the presidio on the south side of the San Diego River. This Kumeyaay village site has been recorded using the place name of Cosoy, Kosaii, or Kosa’aay. The camp was the first Spanish military establishment in California (Smythe 1908). As settlers arrived over time, grants of land were made to persons who filed an application, but many tracts reverted to the government due to lack of use. As an extension of territorial control by the Spanish Empire, each mission was placed so as to command as much territory and as large a population as possible. While primary access to California during the Spanish Period was by sea, the route of El Camino Real served as the land route for transportation, commercial, and military activities, linking all missions and military establishments (Rolle 1969).

The San Diego mission was moved from the presidio approximately six miles inland to its present location in 1773 due to the need for agricultural fields and to distance the mission from the military influence at the presidio. As time progressed into the early 1800s, the Spanish soldiers at the presidio could not rely upon Mexico for regular supplies because of mounting resistance by Mexicans toward Spanish rule. More and more, the military garrison relied upon the self-sufficient mission for food, supplies, and even workers. By 1817, the presidio itself was in a ruinous condition, and its population dropped to only 55 men (Smythe 1908). About this time, residential and commercial development began in what is now Old Town; in fact, most structures built outside the presidio were constructed after 1820. By 1821, Mexico had gained independence from Spain and the northern territories were subject to significant change.

While the presidio and the mission, and later Old Town itself, were established near the San Diego River, the area of downtown San Diego was primarily tidal flats and open shore. Prior to 1849, neither Spanish nor Mexican citizens in San Diego utilized this area. California was invaded by United States troops during the Mexican-American War from 1846 to 1848. The acquisition of strategic Pacific ports and California land was one of the principal objectives of the war (Price 1967). At the time, the inhabitants of California were practically defenseless, and they quickly surrendered to the United States Navy in July of 1847 (Bancroft 1886).

In 1849, a survey party including William Heath Davis, a San Francisco businessman, and Andrew B. Gray identified the area known as “Punta de los Muertos” as a potential town site. However, one critical problem was the lack of a fresh water supply to the area. Gray and Lieutenant T.D. Johns drew up plans for a town site at the old Spanish landfall of the Punta de los Muertos. The plans were presented to a group of San Diegans who formed a partnership on March 16, 1850 to buy and develop 160 acres of what is now downtown San Diego (County Recorder, Deed Book B). This area was bounded by present-day Broadway, Market Street, First Avenue,
and Pacific Highway (Pourade 1964). At the time of the land purchase, about half of the new plots lay below the mean tide level.

The development of New Town began in the summer of 1850, when Davis, the most ambitious of the New Town developers, imported prefabricated houses for some lots in order to spur sales. The block bounded by present-day Columbia, India, F, and G streets was made a public plaza. Andrew Gray took soundings of the bay in 1850 in order to determine the best location for San Diego’s first deep-water wharf. Davis then designed and funded the construction of the wharf, the completion of which allowed off-loading of cargo and passengers at the pier, rather than requiring the use of lighters to ferry them to the shore (Rolle 1969; Brandes et al. 1985).

The New Town initially envisioned by Gray and greatly funded by Davis did not succeed. By the end of 1851, the army and businesses were leaving the area (Garcia 1975; Pourade 1964). Although a railroad terminus appears to have been planned early in the development of San Diego, the failure of the San Diego and Gila Railroad and the Southern Pacific and Arizona Railroad companies, along with the effects of the Civil War, led to the decline in New Town property values. In addition, a fire in San Francisco cost Davis $170,000, which made it difficult to invest in San Diego (Schaefer 1999). Only eight houses remained standing in New Town in 1856. In 1860, San Diego primarily consisted of the small settlement at Old Town, with a population of 459 non-Native American inhabitants (Schaefer 1999). During the 1860s, the deteriorating Davis warehouse and wharf were dismantled for fuel and firewood (MacMullen 1969).

The city was revitalized with the arrival of Alonzo E. Horton in 1867. He purchased approximately 1,000 acres, including most of the Pueblo lots that bordered New Town, and prompted the construction of a large wharf in an effort to attract the shipping industry to the area. Horton’s efforts were focused east of Davis’s New Town, emphasizing 5th Street running north to south, at the end of which the wharf was built. Horton had the property parceled, including a park, streets, blocks, and lots, and initially gave free lots to anyone who would build a permanent structure (Schaefer 1999). Stephen S. Culverwell constructed another wharf in 1868 at the foot of F Street; this wharf extended 150 feet into the bay (MacMullen 1969). By 1869, 124 dwellings had been built, and by 1870, the population of the town had reached 2,300 (Schaefer 1999). During the 1860s and 1870s, tideland development companies worked to improve intertidal real estate, although there were some legal issues involving rights to these lands. After years of disputes between officials of Old Town and New Town, the county courts moved from Old San Diego to Horton’s Addition in 1871. In the early 1870s, the commercial district was focused along the foot of 5th Street, providing easy access to Horton’s Wharf. As the 1870s and 1880s progressed, the commercial district slowly expanded up 5th Street to Broadway and along multiple blocks to the west and east.

With the population increase through the 1870s, clean, reliable water sources and trash accumulation became considerable obstacles. Beginning in the mid-nineteenth century and continuing into the 1870s, hand-dug wells and trucked water were the only sources of fresh water (San Diego Newspaper Index). In fact, several articles reporting hand-dug wells and cisterns,
summarized in the San Diego Newspaper Index, are clustered from the late 1860s to the 1870s. One such editorial article from 1870 included the following statement:

An Artesian Well: A good water supply is the most urgent necessity of San Diego. At present our citizens depend upon the bed of the San Diego River, in Old Town, and a very few good wells in New Town; but the tax is heavy upon ninety-nine one-hundredths of the people, who have to pay the water-carrier for a scanty supply. *(San Diego Union, June 23, 1870)*

By the mid-1870s, a drilled well in the City Park (Balboa Park) and two reservoirs supplied the water needs of a growing city (San Diego Newspaper Index). In March of 1874, the *San Diego Union* stated:

About 18,000 feet of pipe will be put down for the present. Pipe now extends from the smaller reservoir down Eleventh and D, along D to Fifth, down Fifth to K, along K to Eleventh, and will also run through Ninth from D to K and from Fifth along J to Second. The supply from this well will be sufficient for 30,000 population and is seemingly inexhaustible. *(Smythe 1908)*

The Boom Period of the mid-1880s saw San Diego’s population grow at a tremendous rate, thus creating problems with the amount of available water. A number of water-related companies were formed throughout the 1880s and 1890s, including the San Diego Land and Town Company in 1881, the Otay Water Company in 1886, the Linda Vista Irrigation District likely in 1886, the San Diego Flume Company in 1886, the Mount Tecarte Land and Water Company in 1897, the Pamo Water Company in 1888, and the Southern California Mountain Water Company in 1895 *(Sholders 2002)*. The 1888 Sanborn Map described the public water supply system for San Diego as follows:

Source of supply from 12 sunken wells in San Diego River, 1 Gaskell Pumping Engine, cap(acity) 2 million galls per 24 hrs, forces water to first mentioned reservoir a distance of 1400 ft. 1 Worthington Pumping Engine cap. 6000,000 galls per 24 hrs forces water to second mentioned reservoir, a distance of 1 1/2 miles. Water flows from this to Florence Heights reservoir, fall of 33 ft. 1 Worthington Pumping Engine 3 million galls cap’c’y per 24 hrs to be located at Old Town to force water to a stand pipe 125’ high, diam. 30”, on an elevation of 275’ above high tide, distance from pump to stand pipe 2500 ft. Will be in operation about Aug 1st 1888. Average daily consumption 800,000 galls. Supply adequate. 70 hydrants. Pressure at D & 5th sts. 50 lbs. Gaskell Pumping Engine can be cut off from reservoir and force direct to mains, giving pressure of 110 lbs. 30 miles of water
pipe 2" to 12" including pipes to Pacific Beach, University Heights, & 4 suburban additions. (1888 Sanborn Map)

The 1888 Sanborn Map description identifies four reservoirs of the San Diego and Coronado Water Company being located at Old Town, two northeast of Old Town and one at Florence Heights between Grape and Hawthorn streets. In addition, the City of San Diego owned a reservoir in the southern part of the City (Balboa Park) and a well nearby, and was planning on dams on the San Diego River for the future (San Diego Newspaper Index). These water supply elements were sufficient to preclude any need for private wells in downtown San Diego for household water supplies, especially in view of the superior quality of the piped-in water. A longtime resident recalled the water situation of that early period:

When I first came here, water was procured by buckets full from a well at B and First Street and carted over town. The only virtue about that water was that it was wet and it could put out a fire if you could get enough of it, but you never could. In 1872 an artesian well was sunk at Eleventh and A Streets. It was sunk to a depth of 260 feet and, after the hole had been made big enough, it supplied fifty-four gallons an hour. This was our (public) water supply until 1885. Later, wells were sunk in Mission Valley and a pump installed to carry the water in pipes which were laid over the brow of the hill. Then the flume was built in 1889. (Philip Morse, San Diego Union, August 3, 1912)

The late 1880s through the 1890s would have seen the gradual abandonment of private wells; by 1905, no windmills could be seen in downtown photographs. Once the wells and cisterns were abandoned, they often became ready-made refuse pits.

Early San Diego also had to deal with the issue of sewer disposal as the population increased. In 1887, the City provided $400,000 with which to install sewer lines in portions of the city, including Bankers Hill, Middletown, East Village (then south San Diego), and Centre City (City Ordinance 0-60 amended by 0-97 on July 9, 1887, Document No. 102921). This marked the beginning of residential privy abandonment. Garbage disposal, on the other hand, is important in the sense that disposal in the backyard or on a nearby vacant lot was a habit developed during the first decades of settlement in downtown and, like all habits, required time and effort to change. As privy pits became full and outhouses were moved, the old pit had to be filled right away. Any handy refuse was often the first thing to go into the abandoned privy pit before sand or soil was used to finish the backfilling.

Organized trash collection began sometime in the late nineteenth century, and for purposes of this report, dates to the first mention of such activities in the local newspaper. In 1887, citizens complained of burning trash on block lots and in an unofficial dump at the end of B Street, north of Russ School (San Diego Newspaper Index). In those days, a refuse collector was called a
scavenger, collecting garbage, dead animals (such as horses), ashes, rubbish, and night soil. Night soil refers to solids from privy pits and cesspools. At about this time, the City began to take steps to reduce the objectionable odors and smoke from burning trash using a variety of mechanisms (Van Wormer 1991). It was not until 1908 that the City made it unlawful for anyone to dump garbage and waste matter inside the city limits (City Ordinance No. 3180). A 1983 city study documented the widespread practice of trash dumping within San Diego through the late 1930s (Sick 1938).

During the 1870s and 1880s, as with the population, the shipping industry in San Diego continued to grow; by 1887, over 60,000 net tons of shipping were registered in the city (MacMullen 1969). Due to harbor activities, the waterfront areas along the tidelands became desirable for the construction of shanties and low rent businesses; these same areas were not reliable for more permanent structures, and the landowners did little to discourage the shanties from encroaching. By the 1880s, the shanties were established all along the waterfront, serving as homes for laborers, sailors, and their families. The shanties were generally constructed of redwood and were built on pilings or stilts along the tidal area (Stewart 1965).

The mid-1880s saw a major construction boom in San Diego, with city crews paving streets, the introduction of gas and electricity, and the introduction of streetcar tracks. Horton and other speculators were finally successful in bringing the railroad to San Diego via Los Angeles in 1885 (Pourade 1964). Tourism in San Diego increased and land speculators started buying up land in anticipation of the completion of the railroad (Pourade 1964). The population of the city jumped from 7,500 in 1885 to 12,000 in 1886, and between 1886 and 1887, a total of 1,853 buildings were constructed (Schaefer 1999). Major wharves had been constructed by the late 1880s, including Culverwell’s Wharf (later Jorres’s Wharf) and the Babcock and Story Wharf, which was constructed at the foot of Atlantic Street (now Pacific Highway).

John D. Spreckels, a wealthy ship line owner and sugar baron, realized the importance of the relationship between the harbor and the business and financial district, and made San Diego the focus of his business empire. Much of the capital financing for this period of San Diego’s development came from Spreckels and his various companies. As early as October of 1887, the Spreckels Brothers’ Commercial Company began the construction of a brick warehouse at the foot of Market Street. In January of 1888, the company commenced work on the pilings for a new wharf, the completion of which would occur several years later (MacMullen 1969). Between the shipping and railroad industries, the Centre City area became a focus for the sale and export of agricultural products (Schaefer 1999).

It was during the later 1880s that the neighboring communities outside San Diego were established. Towns such as Escondido, Coronado, Ocean Beach, El Cajon, Lakeside, and Ramona were established during this time (Pourade 1964). The Santa Fe coastal route from National City to Los Angeles, as well as the various trunk lines throughout San Diego County and the streetcar line that served the closer neighborhoods, aided the development of communities throughout the area (Schaefer 1999).
By 1888, the bottom had dropped out of the real estate market and many people found themselves holding overpriced property. The population of San Diego dropped from 35,000 to 16,000 in six months (Pourade 1964). Twenty towns had been started around San Diego by this time, some of which quickly disappeared. Several major fires destroyed hotels and other businesses, and most of the local steam railroads went out of business (Pourade 1964). Despite the economic depression San Diego was undergoing, a cable car system went into operation in 1889. Also in 1889, the first flume to bring mountain water to the coastal lands was completed (Pourade 1964). Although things had begun to look up for the city, the problem of rail access still remained an issue. The connection between Los Angeles and San Diego was not direct enough to benefit San Diego. In 1905, a rail line from San Diego to Yuma, and thus to the rest of the country, was proposed. Although it was not completed until 1919, the anticipation of the new railroad, with its direct connection to areas to the east, once again spurred development in San Diego. In addition, three new piers were constructed along San Diego’s waterfront at the foot of 6th, 7th, and 9th streets (Schaefer 1999).

The first decade of the twentieth century started off with steady development in San Diego; however, by the end of the decade, announcements such as a direct rail connection to the east and plans to hold a World Exposition to celebrate the completion of the Panama Canal had increased the pace of development in the city. The population went from 17,700 to 39,578 over the course of the decade (United States Bureau of the Census), and a concern about a shortage of rental houses and cottages for either permanent residents or tourists (*San Diego Union*, February 1900) developed into a statement in 1907 that there were actually no residential vacancies left in the city. Lumber companies tried to match pace with the demand for housing. The Spreckels wharf at Pacific and Market streets became the focus of commercial attention, and soon D Street (Broadway) replaced 5th Street to become the main thoroughfare into downtown. The East Village area and the immediately surrounding streets were dominated by warehouses, large mills, and residential dwellings.

After 1850, the control of the tidelands had been entrusted to the State of California for the purpose of promoting commerce (Smythe 1908). Control of the tidelands was a subject of increasing interest to politicians, investors, and developers at the turn of the century, as the value of the area for the commercial growth of San Diego became obvious. In 1911, the City of San Diego, along with Los Angeles and Oakland, petitioned the State to grant the tidelands within the respective harbors to the cities for development. The authorization of this transfer passed, provided that the City of San Diego make major improvements to the tideland area (Heilbron 1936), including a new bulkhead extending toward the bay and infilling.

During World War I, the wharf at the foot of 5th Street was dismantled. A new wharf was constructed at the west end of Broadway (previously D Street) in 1914 (Brownlee 1984). Anticipation of the opening of the Panama Canal, which would make San Diego the first port-of-call along the United States west coast, increased the city’s reputation as an import/export hub. On February 18, 1908, headlines reported that construction would begin on a mammoth marine
terminal for the San Diego and Arizona Railroad with two huge piers costing upwards of $200,000.

To celebrate the city’s up-and-coming status, the Chamber of Commerce announced in 1909 that San Diego, with a smaller population than California’s other major cities, would host a “Panama California Exposition” from 1915 to 1916 to compete with San Francisco’s World Fair. The next six years would see the building of bridges, the paving of roads, and the development of more commercial areas. Even the Panic of 1907, which affected so much of the country, barely registered in San Diego. Lumber companies actively tried to keep up with housing demands.

The city continued to grow and attract residents as the Exposition approached. In 1912, the city directory reported a growth rate of 1,000 people per month, with only two buildings available for rent; the next year, the directory reported a growth rate of 52 new residents per day. The years immediately following the California Panama Exposition witnessed a decrease in the building frenzy that preceded the event. During World War I, the military secured San Diego as a major hub and shipbuilding became major industry.

The city entered the 1920s with an increasingly promising economy. In November of 1919, John Spreckels drove the golden spike into the San Diego and Arizona Railway. After several decades, San Diego was finally connected to the east via rail. At the turn of the decade, realtors reported a shortage of office rooms and storage space in downtown San Diego, and an equal scarcity of homes for rent in the residential district. The paper reported that San Diego was “simply underbuilt” (San Diego Union, October 8 and 25, 1921). Meanwhile, established industries and companies continued to announce new buildings and expansions. In a desire to interest prospective investors in San Diego’s industrial area, the Board of the Chamber of Commerce talked with kelp product companies, manufacturers of rope and twine, operators of cottonseed oil mills, and heavy farm machinery and steel vessel assembly plants to build up the city’s marine industry (Brandes in Smith 2007). The emphasis of these businesses would be placed on the East Village area, adjacent to both the water and the railroad. Demand for supplies to build new dwellings was reflected in the city’s lumber mills. In May of 1925, the city directory reported that there were 25,077 single-family residences housing 84,282 people, 21,514 people living in flats and apartments, and 7,645 hotel residents. The number of businesses had increased 62 percent in seven years.

The 1930s brought the Depression and a shift in industries to southern California. During this time, development in San Diego was reduced, although the city was not hit as hard as other United States cities. At the close of the decade, several of the old harbor and manufacturing industries gave way to a burgeoning aircraft industry, and San Diego’s numerous naval installations began to prepare for the possibility of war. The United States Navy took control of the waterfront and all shipping. As the economy and job market improved, the city’s increased population spread into the residential areas and the suburbs and away from downtown proper. By World War II, the focus of downtown San Diego development shifted from a mixed residential and commercial area to primarily a commercial and industrial zone of warehouses and factories (Schaefer 1999). Residential use of downtown has reestablished itself only recently with the
establishment of Civic San Diego.

History of the San Diego International Airport

Early Experiments in Aeronautics

The first aviation pioneer in the San Diego area was John Montgomery. In 1883, Montgomery built a monoplane glider and completed the first glider flight in the Americas at Otay Mesa, just south of San Diego. The following decades witnessed further experimentation and aviation firsts accomplished by individuals such as Donald Gordon, Charles Hamilton, and Waldo Waterman. Their efforts earned San Diego the reputation as “The Air Capital of the West” (Pourade 1977). San Diego soon earned a reputation as a center for aviation innovation, which led to the first San Diego Air Meet in Coronado in 1910. At this event, aviator Charles Hamilton made the first verified powered flight in San Diego County, which was also the first flight across the United States-Mexico border (Pescador et al. 2012).

Also in 1910, aviator Glenn Curtiss chose San Diego’s temperate flying climate and protected bay as the location to develop his hydro airplanes. That year, Curtiss established the first of his aviation schools on Coronado’s North Island, across the bay from the future Lindbergh Field. At the time, the North Island was connected to Coronado by a narrow sand spit. The narrow waterway between the two islands was later dredged and filled in. An early advertisement for the Curtiss Aviation School described the North Island as “1,000 acres of level sand without a tree or building to interfere with flying” (Pescador et al. 2012). Curtiss accomplished several aviation firsts: the world’s first seaplane flight, the first amphibian flight, and the first ship-to-shore flight (Pescador et al. 2012). In an attempt to interest the military in aviation, Curtiss offered flight instruction to the Army and Navy, both of which had no established aviation programs at that time. In addition to training military pilots, the Curtiss Aviation School also trained civilians, and by 1912, the more pilots had graduated from the school than any other flying school, making it the largest in the United States (Pescador et al. 2012). In 1911, one year after the establishment of the Curtiss Aviation School, both the Army and the Navy established a permanent presence on North Island.

World War I Aviation

In 1917, Congress commissioned two airfields on North Island: Rockwell Field and Naval Air Station (Pescador et al. 2012). A War Department study indicated that “the terrain in the vicinity of San Diego Bay California fulfills aviation requirements better than any other section of the United States,” and that, as far as weather and air conditions were concerned, it was the best region for military air (U.S. Congress 1917). The Army and Navy aviation stations also accomplished many aviation firsts in San Diego, including the first nonstop transcontinental flight, which landed on North Island, and the first in-flight refueling between two army BH-4s (Pescador et al. 2012).
Post-War Developments

In 1922, T. Claude Ryan, an ex-Army reserve pilot, offered sightseeing flights and flight lessons to the public at Dutch Flats, which was located near the present-day intersection of Midway and Barnett avenues in the Midway District of San Diego, north of the current San Diego International Airport. In 1925, Ryan and his business partner B. Franklin Mahoney started Ryan Airlines and began offering daily flights to Los Angeles. This made Ryan Airlines the first United States airline to operate regularly scheduled, year-round service (Pescador et al. 2012). Ryan Airlines experienced great success, drawing the attention of famous aviator Charles Lindbergh, who asked the company to build an airplane capable of a transatlantic crossing. Ryan Airlines produced a custom-built, single-seat monoplane for Lindbergh in just sixty days (Pescador et al. 2012). Lindbergh took off in the plane, which was named the Spirit of St. Louis, from Long Island on May 20, 1927 and landed in Paris, France 33 hours later, thus completing the first transatlantic flight in history. In September of 1927, Lindbergh returned to San Diego and was welcomed by 60,000 cheering San Diegans (Pescador et al. 2012).

General Aviation

The growing demand for air travel and the desire to attract aircraft manufacturing jobs fostered the civic support necessary to fund a municipal airport in San Diego. A 1927 San Diego Union article extolled the importance of such an airport “from the standpoint of industry, transportation, naval development and commerce” (San Diego Union 1927). By the 1920s, Dutch Flats was being privately run and was hazardously crowded, and Coronado’s North Island was under military control. In 1926, a newly formed aviation committee chose the north end of San Diego Bay to build an airport. However, the Marines also desired an airfield for their base adjacent to the proposed location for the new airport (Pescador et al. 2012). A joint-use airport was designed, with the total cost slated as $1,806,000. The federal government allotted $1,060,000 for the construction of a seawall and dredging to fill in what would be the United States

Plate 1.2-1: A stylized drawing of Lindbergh Field with the Spirit of Saint Louis and Charles Lindbergh prominently featured. (Illustration courtesy of San Diego Union 1927)

1.0–20
Navy/Marine Corps portion of the airfield, and the City of San Diego agreed to pay $96,000 toward their portion of the airport. On May 26, 1927, the San Diego Chamber of Commerce voted to support a special public election to decide if bonds should be issued for the remaining $650,000 dollars; a few days prior, after completing his historic flight, Lindbergh had granted the City of San Diego permission to name the new airport after him (Pescador et al. 2012). Despite some opposition, the measure was passed by an overwhelming majority on November 22, 1927, and the bonds were issued shortly thereafter (Pescador et al. 2012).

Prior to construction, much of present-day Lindbergh Field consisted of a mud flat that was covered by water during high tides. The original design for the airport consisted of a 3,000-foot-diameter, circular runway (Plate 1.2–1) (San Diego Union 1927). The executed airport design would end up consisting of 287 acres, 105 of which belonged to the City and 182 of which belonged to the United States Marine Corps (URS Corporation 2009).

On August 6, 1928, the San Diego City Council granted the first lease to the San Diego Air Service Corporation (an aviation school) “for hangar space, flying field privileges and office room on the new Lindbergh field” (San Diego Union 1928a). As part of this lease, the San Diego Air Service Corporation was “given 10,000 square feet of ground for a hangar, to be constructed at a cost of $12,000, with equipment to cost about $35,000” (San Diego Union 1928a).

While preparations were being made to build the first hangar, the San Diego Municipal Airport-Lindbergh Field opened on Pacific Highway on August 16, 1928. Upon completion, control of the airport was given to the Harbor Commission. The airport was dedicated to Charles Lindbergh “to the accompaniment of roaring motors and the scream of wind through the struts and wings of a myriad of speeding aircraft” (San Diego Union 1928b). A 222-plane flyover (San Diego Union 1928b) left revelers “almost breathless” (San Diego Union 1928c) after a series of daring stunts under low-lying clouds. Due to its ability to accommodate seaplanes, Lindbergh Field was the first federally certified airfield that could serve all plane types, also earing it the first AAA rating for an airport (Pescador et al. 2012).

A building permit was issued on August 21, 1928 for construction of the San Diego Air Service hangar by National Iron Works on the “Municipal Tidelands” (San Diego Union 1928d). The hangar was completed in September of 1928 (Pescador et al. 2012) (Plate 1.2–2). In May 1929, the San Diego Air Service began aerial taxi flights to any destination in the United States.

In March of 1929, San Diego Air Service expanded their flying activities to
include the Airtech Training School (Plate 1.2–3) (*San Diego Union* 1929a), which offered a commercial pilot’s course, a private pilot’s course, and a transport pilot’s course. Combined, these three courses would qualify students for their pilot’s license. Between 1928 and 1932, 254 students attended the Airtech Training School (*San Diego Union* 1932a). The hangar was later leased by the Nelson-Kelley Co. in the 1940s.

Dredging San Diego Bay was completed in December of 1929, leaving the bay 34 feet deep and creating 142 acres to be utilized by Lindbergh Field (*San Diego Union* 1929b). Throughout the 1930s, a number of other dredging projects added acreage to Lindbergh Field.

Commercial Aviation

The second building constructed at Lindbergh Field was the Pacific Air Transport (PAT) hangar and terminal in 1931 (Site P-37-028620; see Section 3.3.7), which was located just south of the Airtech hangar (see Plate 1.2–3). A dedication ceremony commemorating the completion of the new building was held on May 28, 1931. Starting with a 7:30 a.m. flight, the first of the “Daylight Flyer” service from San Diego to Seattle, the day featured “a full program of events … including a public dance in the new
The SDIA Airport Development Plan Project

1.0–23

P.A.T. hangar” (San Diego Union 1931a). The new building featured a hangar, a passenger corridor on the north side of the hangar, and an attached office with restrooms, ticket offices, and a waiting room. Four days after the ceremony, it was announced that PAT, National Air Transport, Boeing Air Transport, and Varney Airlines would be consolidated and designated as divisions of United Airlines (San Diego Union 1931b). The PAT hangar building was thereafter referred to as the United Airlines hangar and terminal (Plate 1.2–4). Prior to the construction of the United Airlines hangar and terminal, the airport did not have a ticket office, as between 1929 and 1931, a square pilot house from a tugboat located to the west of the Airtech hangar served as a ticket booth (Van Wormer and Robbins-Wade 2006).

In 1932, Claude Ryan leased two parcels to the north of the Airtech hangar to use as the new location for the Ryan School of Aeronautics (RSA), which was previously located at the Dutch Flats airport. The Olmstead Building Company constructed two buildings for RSA: a Spanish Revival-style administration building and a large airplane hangar (Plate 1.2–5).

Plate 1.2–5: Ryan School of Aeronautics buildings circa 1932. (Photograph courtesy of the San Diego Air and Space Museum)

The administration building was described as a “building of Spanish architecture ... comparable in appointment and conveniences to any in the United States,” with “a central three-story tower ... topped with a revolving beacon” and “glass enclosed offices with unobstructed views” of the flying activities over the bay (San Diego Union 1932b). The entire second floor was occupied by “James Nall and department of commerce activities while the third floor” consisted of “a complete teletype service for weather reports” (San Diego Union 1932b). The north wing
contained “the main offices and class rooms for the Ryan school of aeronautics with space to permit display of a completely assembled Great Lakes airplane” (San Diego Union 1932b). Finally, the south wing consisted of “space for a well equipped airport café with entrances both on the Atlantic [Pacific Highway] street front and the airport side of the building” (San Diego Union 1932b). The building measured 134 feet long and approximately 60 feet wide. It was anticipated that once completed, the building would serve as a “fitting civic headquarters for President Hoover and his party when he comes to San Diego to review the government’s massed flight” (San Diego Union 1932b).

The hangar, built to the north of the administration building, was constructed of “steel with a stucco exterior. Its dimensions of 100x120 feet with a 20-foot addition on the field side” and hangar doors measuring 18 feet tall made it “one of the largest buildings of its type on the Pacific coast” (San Diego Union 1932b). The hangar and administration building were dedicated on July 28, 1932. The dedication ceremony included a dance in the hangar with music by the Casa de Manana orchestra and a chance to win airplane rides from American Airways, Gilpin Airlines, United Airlines, Western Air Express, Airtech flying service, and Ryan flying service (San Diego Union 1932c).

Aircraft Manufacturing

In 1934, the Consolidated Aircraft Corporation (CAC) of Buffalo, New York, an aircraft manufacturing company, planned to move its factory operations to Lindbergh Field. After obtaining a 50-year lease for 30 acres north of the RSA (Van Wormer and Robbins-Wade 2006), a building permit was issued on March 30, 1935 for the “steel and concrete aircraft manufacturing plant, 3302 Atlantic St. [Pacific Highway]” (San Diego Union 1935a). Construction was to be completed by the Consolidated Steel Company. After months of construction, the plant opened on September 3, 1935 with 175 workers (San Diego Union 1935b) (Plate 1.2–6). The plant soon expanded to 120 acres and had a work force of approximately 3,000 employees. In the late 1930s, the CAC was the largest employer in San Diego (Van Wormer and Robbins-Wade 2006).

Plate 1.2–6: Consolidated Aircraft Corporation plant in November of 1935. Note the Ryan School of Aeronautics hangar to the left. (Photograph courtesy of the San Diego Union Tribune)
Additional dredging operations undertaken by the Works Progress Administration (WPA) in 1935 increased the airport to 287 acres (San Diego Union 1935c). An Army Air Corps Reserve hangar funded by the WPA was constructed at Lindbergh Field in 1936 (San Diego Union 1936). In 1939, another WPA grant rearranged and resurfaced the takeoff and landing runways. At that time, ongoing dredging projects also increased the area of the airport to 413 acres (San Diego Union 1939), and by 1941, the airport included 455 acres (Van Wormer and Robbins-Wade 2006).

In the 1930s, the RSA was expanded to include airplane manufacture. On May 19, 1939, approval was granted for a new building for the school on Harbor Drive (San Diego Union 1939), and on March 9, 1940, a permit was issued to construct a $23,000 office building (San Diego Union 1940). This new building was meant to “house office staffs of the firm which operates a flying school and a factory building training ships” (San Diego Union 1940).

World War II Aviation

Europe entered World War II in September of 1939. In March of 1941, Franklin D. Roosevelt signed the Lend-Lease Act, allowing the United States to give aid to Britain and China during the war. As a result, Roosevelt set a production goal of 60,000 military planes in 1941 and 125,000 military planes in 1942. In order to meet this goal, the CAC plant underwent a $2,500,000 expansion (Pourade 1977). The CAC had 16,500 employees at the beginning of 1941 and was expected to hire 15,500 more by 1942. The CAC, with the Ryan, Solar, and Rohr production plants, employed 3,400 workers with plans to hire an additional 3,800. In response to the planned hires, the construction of at least 15,000 dwelling units was stressed as a necessity by the San Diego Chamber of Commerce (Pourade 1977).

The United States entered World War II on December 8, 1941, one day after the bombing of Pearl Harbor. Three days later, the CAC announced that it would bring 10,000 additional workers and their dependents to San Diego within five weeks. Most families who moved to San Diego at that time came from the Midwest and southern United States (Pourade 1977). During the war, civilian flights still operated out of Lindbergh Field, but they became subordinate to the airport’s military operations (Pourade 1977).

A second CAC plant was financed by the United States Army Air Corps in the early 1940s. The plant was built on the tidelands to the north of the existing CAC plant and focused upon the production of CAC plane parts. The number of planes produced by the CAC plant was kept confidential, as they were flown from Lindbergh Field to American Army and Navy bases, or to other countries such as England, Australia, and Canada (Pourade 1977). Because it was feared that the CAC plant may become the target of air raids or landing forces from Japan, Pacific Highway and the plant were covered with camouflage netting and the runway was painted to look like intersecting city streets with associated structures. In order to minimize attention to the area, the runway lights were kept off except for when in use for a monitored landing (Pourade 1977).

In 1943, the CAC merged with Vultee Aircraft, Inc., becoming Consolidated Vultee, or Convair (Pourade 1977). After the merger, Convair expanded to include 13 divisions located
throughout the nation with up to 100,000 employees, producing approximately 33,000 aircraft between December 7, 1941 and the summer of 1945. A total of 6,724 B-24 bombers came off the production lines at the San Diego plant alone (Pourade 1977). In late 1944, Convair relocated their hangar building to the southeastern portion of the airport in order to make way for the construction of a “low speed” wind tunnel building (San Diego Union 1944); construction for the wind tunnel took nearly three years, but the building was finally completed and aircraft testing operations began in 1947 (San Diego Union 1947). A complete discussion of the Convair Wind Tunnel can be found in Section 3.3.9.

Changes in the Aeronautical Community

The war came to an official end in September of 1945; economically, however, the end of the war had been foreseen for some time. By that year, Convair had already reduced its work force to under 14,000 employees, and Rohr Aircraft, which specialized in aircraft components, had reduced their work force of 9,500 to less than 2,900. In order to stay in business after wartime demands ceased, some aviation companies branched out into other industries, such as Ryan Aeronautical Company, who manufactured metal burial caskets for a short time (Pourade 1977). While employment in the aircraft manufacturing industry was declining dramatically, employment rates as a whole across San Diego only declined by about one-third, and the city’s population actually rose to more than 42,000.

An emerging focus upon tourism and recreation arose in San Diego, and developers looked to the waterfront for development opportunities; however, about 37 percent of the waterfront land belonged to aircraft companies and Lindbergh Field. From 1950 to 1951, the City was heavily considering moving the airport from the waterfront to somewhere with more favorable terrain and less fog. The Navy and the City entered into a 50-year lease, allowing the City to share the military air field at Miramar, as Pacific Fleet air operations had been dramatically reduced post-war (Pourade 1977).

Meanwhile, Convair, under new management, was still producing high tech military planes. The Atlas Corporation took control of Convair on November 20, 1947, and the company began producing early models of a new fleet of bombing planes called B-36s. However, there was limited interest in military aircraft and missiles and San Diego’s other aircraft companies were refocusing after the war. Ryan Aeronautical Company had begun producing the “Navion,” a high-performance private plane; Solar Aircraft began selling their wartime heat-resistant metals to commercial plane manufacturers; and Rohr Aircraft was rapidly becoming the world’s largest producer of airplane power packages (Pourade 1977).

A large number of service pilots were also left without jobs after the war; to mitigate this, Ken Friedkin, a wartime flight instructor, opened a commercial flight school with his friend, Joe Prosser, for veterans who had discovered flying during the war. By 1948, however, the number of veterans enrolling in the flight school dropped dramatically, so Friedkin established Pacific Southwest Airlines (PSA), a private airline flying out of Lindbergh Field. PSA initially had limited
resources, utilizing a small Marine Corps latrine to serve as their first headquarters. With no facilities inside the airport’s terminal, PSA weighed baggage on a bathroom scale and checked passengers in at the flying school’s lobby. Their first flight took 24 passengers from San Diego to Oakland, with a layover in Burbank, on May 6, 1949. Because of their minimal facilities and short route, PSA was able to charge low ticket fares, undercutting United Airlines and Western Airlines by more than half, and quickly became the first large budget airline in the country. PSA primarily served Navy war veterans from nearby bases, earning them the nickname the “Poor Sailor’s Airline” (Trinkle 2017).

The Space Race

Peace would be short-lived following World War II, however, as Communist troops in North Korea marched across the border into South Korea on June 25, 1950. The United Nations pledged to support South Korea and President Truman ordered American soldiers into action just five days later. The Korean War revitalized the military industry in San Diego. As the City had not acted on its rights to utilize the air fields at Miramar, the Navy reclaimed the land and began production on what would become one of the world’s largest Naval air stations (now Marine Corps Air Station [MCAS] Miramar), forcing Lindbergh Field and aircraft technology companies to remain downtown (Pourade 1977).

In the 1950s, Convair and Ryan Aeronautical Company began to develop jet-powered aircraft, which created an increasing noise issue for the nearby residential neighborhoods. As the amount of air travel traffic began to increase, the Ryan Aeronautical Administration building was expanded into a larger airport terminal in 1951. Concerns also rose regarding the location of the airport, with high terrain to the east (forcing a steep landing angle) and its proximity to Point Loma and other high-density residential areas, possibly creating unsafe flying conditions as a result of these new, more powerful aircraft. The City began acquiring land and an existing private airport (now Montgomery Field-Gibbs Executive Airport) in Kearny Mesa between 1950 and 1954, intending to improve the runways and facilities for an eventual large-scale airport relocation from downtown. Military jet operations at MCAS Miramar, however, had increased dramatically by this time, and the President’s Air Coordinating Council rejected the City’s proposal to create a major passenger terminal at Montgomery Field for safety reasons due to air traffic conflicts (Pourade 1977).

Desperate to find a new airport location amid rising safety concerns and residential noise and pollution complaints, in 1956, the City contracted Leigh Fisher & Associates (LFA) to evaluate the situation and propose potential solutions. LFA ultimately recommended that the City relocate North Island, which was currently being used as a Naval air base, and split the real estate with the Navy, despite military objections. The Navy objected and offered two alternative solutions: relocation to Mission Bay or relocation to the already-established Naval Auxiliary Air Station Brown Field, which it would consider decommissioning by 1960 (Pourade 1977). Mayor Charles Dail rejected relocation of the airport to Mission Bay, saying it would be both politically
and economically infeasible; additionally, Mission Bay would be a logistical nightmare, as the land was unstable and would require a substantial amount of infilling and packing. Brown Field presented difficulties, including its distance from the city and its close proximity to Mexico, potentially subjecting the airport to operation restrictions. The City hired Charles Luckman and Associates of Los Angeles to investigate Brown Field’s feasibility, and they found that, while a municipal airport could work as long as the runways were oriented north to south, Brown Field and the Tijuana Airport could not be operated as separate fields because of air traffic conflicts (Pourade 1977).

Lindbergh Field remained in operation until a permanent location could be selected; however, it required maintenance improvements. In 1957, the Civil Aeronautics Administration (CAA; later called the FAA) rejected a proposal for the expansion of the airport; however, with the City’s assurance that Lindbergh Field would not be the permanent master airport, the CAA considered partially funding an expansion project in the interests of safety and practicality, under the assumption that a new terminal building may be relocated. However, William B. Davis, the acting CAA administrator, said that the CAA doubted that airlines would ever serve Lindbergh Field with jet-powered aircraft (Pourade 1977).

Heading into the 1960s, the aircraft manufacturing industry was struggling. The nation was again in a time of peace, and as a result, missile production had slowed substantially. During this time, employment at Convair dropped from 35,000 workers to 10,000. Work was expected to decline by half once the company was done building launching sites for their Atlas missiles. Convair’s main aircraft plant had sustained heavy financial losses (around 425 million dollars) on the production of the 880 and 990 jetliners. Other companies in the industry, however, were faring better than Convair, but only those who were shifting their focus away from aircraft production. Ryan Aeronautical Company had diversified, expanding into electronics, radar, and drone production. Rohr Aircraft was also experimenting in electronics, as well as with prefabricated homes and bathrooms. Solar Aircraft, who had merged with Harvester International, continued to focus upon aviation, working on a new gas turbine engine, but with only 1,800 employees (Pourade 1977).

Around the same time, national news magazines were publishing articles calling San Diego a “bust” town with no growth potential. The California state legislature proposed an act that would create a San Diego Unified Port District, which, upon approval, would require five cities (National City, Chula Vista, Imperial Beach, Coronado, and San Diego) within the new district to turn over their tidelands to a new Board of Port Commissioners for development. The measure passed by a majority in all cities except Coronado, but despite their vote, the Unified Port District was created and a development plan for the waterfront was underway (Pourade 1977).

Airport Expansion and Modernization

One of the most pressing issues for the Unified Port District to address was the future of Lindbergh Field. By 1964, approximately 1.4 million airline passengers passed through Lindbergh
Field annually, despite the fact that the terminal had a capacity rating of only 500,000 per year. In response, the Unified Port District board passed a development plan that allotted a 4.7-million-dollar bond for the construction of a new passenger terminal and associated facilities at Lindbergh Field. Port of San Diego planners conceived a new terminal design that could handle the growth potential beyond two million passengers per year (San Diego Unified Port District 1964-1965). This time, the FAA allowed that Lindbergh Field could be used for all jet-powered aircraft in the foreseeable future. Construction on what is now Terminal 1 began in 1965.

1960s and 1970s Air Travel Boom

Growth in the city, including aviation and aviation technology, exploded following the formation of the Unified Port District. Convair, after merging with General Dynamics, was again on the rise, as the company had perfected the Atlas missile, which was ultimately vital to the space program, and soon grew to 12,350 employees. Rohr Aircraft grew to 10,000 employees, General Atomic (another division of General Dynamics) had nearly 2,000 employees, and Ryan Aircraft had a backlog of orders totaling 110 million dollars (Pourade 1977).

Terminal 1 was operational on March 5, 1967, serving 801,212 passengers in the remaining four months of the fiscal year; through the entire fiscal year, the 1951 terminal (former Ryan Aeronautical Administration building) and the new Terminal 1 served a total of 2,177,110 passengers, handled 5,384 tons of air freight, and saw a 22.90 percent increase in air mail (San Diego Unified Port District 1966-1967). This was quadruple the number of passengers in 1956, indicating a growth rate for air travel in San Diego that was above the national average. However, this soon proved to be problematic, as Terminal 1 rapidly became unable to handle the growing volume of passengers. The 1951 terminal had been razed, which put additional pressure on Terminal 1. Between 1967 and 1968, 2,719,584 passengers traveled through Lindbergh Field, and the Unified Port District anticipated the number to increase to over three million the following year.

Arthur D. Little, Inc., a planning consultant and systems analysis firm, was contracted by the Unified Port District in March of 1968, to determine what additions or improvements to the airport were “necessary to meet anticipated demands upon this metropolitan airfield from the present through the year 1990,” just one year after the new terminal opened (San Diego Unified Port District 1967-1968). Later that year, voters in the Unified Port District communities passed Proposition J, a 25.4-million-dollar bond, 10.9 million dollars of which were allotted for a second expansion at Lindbergh Field to service the new generation of wide-bodied commercial aircraft (San Diego Unified Port District 1991).

Before construction of the new terminal, however, an updated control tower, built to new FAA standards, opened in late December of 1967, and in July of 1968, a new, three-story administrative office building and airplane hangar for PSA were completed. The administrative offices on the third floor of the new PSA building contained the world’s first “instant and complete reservation service in the industry” (San Diego Union 1967a). On January 1, 1970, a new fire and
rescue station was opened adjacent to the control tower. In 1972, an extension to the main service runway brought it to its present-day length of 9,400 feet (San Diego Unified Port District 1991). Federally-mandated security measures were implemented in 1973, introducing baggage search checkpoints and screening operations to reduce the potential for aircraft hijacking. In 1974, a revolutionary new system for monitoring noise pollution was completed; this was one of the first elaborate monitoring systems to be installed in any major California airport. A 26-acre parking apron was built at the site of the future Terminal 2 in 1975 to service the new, larger commercial aircraft. Finally, in January of 1976, various taxiways and runways were also strengthened to accommodate the larger aircraft (San Diego Unified Port District 1991).

The city’s economy took a downturn, and in 1971, plans for the new terminal were shelved due to cost and size issues. Debates arose on whether or not making additions to existing facilities would be adequate for San Diego’s long-term airport needs (San Diego Union 1974a). The airport’s location presented flying dangers, and there was concern that an increase in air traffic would only increase the likelihood of a deadly incident. Residents in the area were still frustrated due to the noise pollution, worsening traffic conditions, and air pollution, which would all likely increase with the expansion of the airport (San Diego Union 1974a). Despite opposition toward expansion, the Unified Port District commissioners recommenced planning the airport expansion in 1974 by hiring the firm of Paderewski, Dean & Associates, who had designed Terminal 1. In response to the controversy, the commissioners claimed that they had a “responsibility of providing adequate facilities for the traveling public,” which in 1973, was over four million passengers (San Diego Union 1974b).

In June of 1977, construction of the new terminal finally began 100 yards west of Terminal 1. Once completed on July 11, 1979, Terminal 2 was called the “West Terminal,” and Terminal 1 was called the “East Terminal” (San Diego Unified Port District 1991). Construction of Terminal 2 greatly eased parking congestion as it included two additional parking lots, which brought the combined parking capacity at the airport to over 3,000 spaces (San Diego Unified Port District 1991). Terminal 2 was streamlined for maximum efficiency with new roadways, an electronic parking fee collection system, and a new baggage handling system in a separate building. A covered pedestrian bridge facilitated access to the baggage claim building from the second-floor boarding concourse.

Continued Air Facility Expansion

The new and modern Terminal 2 highlighted the drastic need for improvement of the older Terminal 1 and the airfield in general. To ease congestion and provide more maneuverability for aircraft at Terminal 1, a 46,710-square-yard, “L”-shaped holding apron was paved adjacent to the runway in 1980. A remodel of Terminal 1 was completed in 1982, which added a second story to the east rotunda and allowed passengers to board the modern, wide-bodied airplanes through jetways rather than stairs. It also provided additional seating in a larger waiting area to accommodate more passengers, expanded the baggage service area, created a second-story office
space, and closed the west rotunda to allow for larger hold rooms (San Diego Unified Port District 1991). In 1984 and 1988, two runways and entrance roads to the terminals were repaved and reinforced. Also in 1988, the United States Customs office was modernized for more efficiency and a United Service Organizations (USO) lounge was added to Terminal 2 for the convenience of military service members and their families (San Diego Unified Port District 1991).

In 1990, the west rotunda would receive a second level with eight passenger bridges and improvements to several gates. In 1995, a 300,000-square-foot expansion and upgrade of Terminal 2, called “Terminal 2 West,” broke ground, and in 1996, the old PSA headquarters building was converted into the airport’s “Commuter Terminal,” servicing short route flights via small aircraft. Also in 1996, 16 public works of art were put on display in Terminal 2 and the Commuter Terminal. To improve safety, in 1997, a taller and more modern control tower was built.

On October 14, 2001, California Assembly Bill 93 established the SDCRAA as a local entity of regional government in charge of overseeing airport operations; the bill also required the SDCRAA to generate a comprehensive airport land use plan and submit a site selection for a future regional airport (Pescador et al. 2012). In December of 2002, the SDCRAA Board conducted its first meeting, and on January 1, 2003, airport ownership and operations were transferred from the Unified Port District to the SDCRAA (Pescador et al. 2012). After the SDCRAA was formed, then-President/CEO Thella Bowens officially dropped the name “Lindbergh Field” in favor of the “San Diego International Airport” when applying for a new operating certificate from the FAA (SDIA 2017). According to SDCRAA projections at that time, the SDIA would hit capacity between 2015 and 2022. In response, the SDCRAA proposed a ballot measure to create a new international airport at MCAS Miramar, despite the military’s objections; however, the measure was overwhelmingly defeated in the 2006 midterm election (Davis 2006). Since then, other relocation sites have been proposed, but no decision has been made concerning a future location for the airport.

Currently, the airport is undergoing a long-term, multi-stage Master Plan that was adopted by the SDCRAA Board in 2008. Improvements that have been completed under the Master Plan include:

- The one-billion-dollar Green Build Project (improvements and additions to Terminal 2 designed to meet the airport’s current and projected future demand; improve customer service; and reduce the airport’s overall environmental impact) completed in 2013;
- A fixed-base operator building completed in 2014;
- The closure of the Commuter Terminal in 2015 (the building is now being used as the SDCRAA headquarters); and

In 2010, the Ryan Aeronautical Company Complex was demolished to make way for the cell phone waiting area and additional employee parking. On April 9, 2014, the SDIA was
awarded Leadership in Energy and Environmental Design (LEED) Platinum certification for the Green Build expansion, making it the first LEED Platinum-certified commercial airport terminal in the world (SDIA 2017). In 2016, construction began on a three-story parking plaza with approximately 3,000 parking stalls located in front of Terminal 2, which will provide a net increase of 1,700 parking stalls. This project is expected to be completed in the summer of 2018 (SDIA 2017). Planned future projects include a new receiving and distribution center, roadway improvements, new aviation facilities, and an observation park.

1.2.3 Results of the Archaeological Records Search

An archaeological records search for a one-mile radius around the project was conducted by the SCIC at SDSU, the results of which were reviewed by BFSA. The SCIC reported that 94 previously recorded archaeological sites are recorded within the one-mile search radius (Table 1.2–1), 24 of these which are recorded within the project boundaries (P-37-015531 through P-37-015550, P-37-015552, P-37-015553, P-37-028620, and SDI-18,401). The sites recorded within the project include:

- 20 historic buildings and a footbridge located within the Consolidated Aircraft Plant No. 1 Historic District;
- The Consolidated Aircraft Plant No. 1 Historic District;
- The United Airlines 1931 hangar and terminal (ASIG Building); and
- The Ryan Aeronautical Company Historic District.

The remaining 70 archaeological resource locations recorded within a one-mile radius of the project include:

- 16 single-family residences;
- 12 commercial/industrial buildings;
- Five warehouse buildings;
- Five historic trash dumps;
- Three historic trash deposits;
- Three probable prehistoric campsites;
- Three apartment buildings;
- Two duplex buildings;
- Two historic refuse deposits;
- One historic ship;
- One historic boat;
- One Quonset hut;
- One historic commercial building complex;
- One historic Pacific Technical University building;
- One military barracks building;
- One historic occupation site;
- One prehistoric refuse heap;
- The Barth Foundry historic dump;
- The graves of Captain and Nell Woodworth;
- A historic building foundation complex;
- Spanish Landing Park;
- A segment of Midway Drive;
- The historic Mission Brewery building;
• The Consolidated Aircraft Plant No. 1 Hydrodynamics Laboratory building;
• The Air Force Plant No. 19
• One historic footbridge; and
• Two concentrations of isolated historic artifacts.

Table 1.2–1
Archaeological Resources Within One Mile of the Project

<table>
<thead>
<tr>
<th>Site Number</th>
<th>Site Type</th>
<th>Site Dimensions</th>
<th>Report Reference/Recorded By</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-37-015531*</td>
<td>Consolidated Aircraft Plant No. 1, Historic District</td>
<td>159,465.65 square meters</td>
<td></td>
</tr>
<tr>
<td>P-37-015532*</td>
<td>Final Assembly Building 2, Consolidated Aircraft Plant No. 1</td>
<td>360x720 feet</td>
<td></td>
</tr>
<tr>
<td>P-37-015533*</td>
<td>Final Assembly Building 3, Consolidated Aircraft Plant No. 1</td>
<td>360x720 feet</td>
<td></td>
</tr>
<tr>
<td>P-37-015534*</td>
<td>Major Parts Assembly Building 4, Consolidated Aircraft Plant No. 1</td>
<td>200x1,500 feet</td>
<td></td>
</tr>
<tr>
<td>P-37-015535*</td>
<td>Building 8, Final Finish Building, Consolidated Aircraft Plant No. 1</td>
<td>120x240 feet</td>
<td></td>
</tr>
<tr>
<td>P-37-015536*</td>
<td>Building 9, Boiler House, Consolidated Aircraft Plant No. 1</td>
<td>50x150 feet</td>
<td></td>
</tr>
<tr>
<td>P-37-015537*</td>
<td>North Overpass, Northern Foot Bridge, Consolidated Aircraft Plant No. 1</td>
<td>25x260 feet</td>
<td></td>
</tr>
<tr>
<td>P-37-015538*</td>
<td>Building 1, Manufacturing Building, Consolidated Aircraft Plant No. 1</td>
<td>720x1,000 feet</td>
<td>Stephen Van Wormer, KEA Environmental</td>
</tr>
<tr>
<td>P-37-015539*</td>
<td>Building 5, Experimental Building, Consolidated Aircraft Plant No. 1</td>
<td>325x405 feet</td>
<td></td>
</tr>
<tr>
<td>P-37-015540*</td>
<td>Building 6, Woodmill, Consolidated Aircraft Plant No. 1</td>
<td>50x120 feet</td>
<td></td>
</tr>
<tr>
<td>P-37-015541*</td>
<td>Building 14, Office Building, Consolidated Aircraft Plant No. 1</td>
<td>50x100 feet</td>
<td></td>
</tr>
<tr>
<td>P-37-015542*</td>
<td>Building 15, First Aid Facilities, Consolidated Aircraft Plant No. 1</td>
<td>37x50 feet</td>
<td></td>
</tr>
<tr>
<td>P-37-015543*</td>
<td>Building 16, Office Building, Consolidated Aircraft Plant No. 1</td>
<td>60x170 feet</td>
<td></td>
</tr>
<tr>
<td>P-37-015544*</td>
<td>Building 17, Fire Station</td>
<td>30x30 feet</td>
<td></td>
</tr>
<tr>
<td>P-37-015545*</td>
<td>Building 20, Automatic Service Garage, Consolidated Aircraft Plant No. 1</td>
<td>30x120 feet</td>
<td></td>
</tr>
<tr>
<td>P-37-015546*</td>
<td>Building 28, Security Building, Consolidated Aircraft Plant No. 1</td>
<td>20x20 feet</td>
<td></td>
</tr>
<tr>
<td>P-37-015547*</td>
<td>Building 33, Cafeteria/Classrooms, Consolidated Aircraft Plant No. 1</td>
<td>81x280 feet</td>
<td></td>
</tr>
<tr>
<td>P-37-015548*</td>
<td>Building 35, Wind Tunnel, Consolidated Aircraft Plant No. 1</td>
<td>90x255 feet</td>
<td></td>
</tr>
<tr>
<td>Site Number</td>
<td>Site Type</td>
<td>Site Dimensions</td>
<td>Report Reference/Recorded By</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>P-37-015549*</td>
<td>Building 39, Salvage Warehouse, Consolidated Aircraft Plant No. 1</td>
<td>30x80 feet</td>
<td>CompuShare, Inc.; updated by Walter Smoyer</td>
</tr>
<tr>
<td>P-37-015550*</td>
<td>Building 40, Convair Prototype Test Shop</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>P-37-015551</td>
<td>Building 42, Hydrodynamics Laboratory, Consolidated Aircraft Plant No. 1</td>
<td>20x40 feet</td>
<td></td>
</tr>
<tr>
<td>P-37-015552*</td>
<td>Building 47, Fire Sprinkler System Pump House, Consolidated Aircraft Plant No. 1</td>
<td>20x30 feet</td>
<td></td>
</tr>
<tr>
<td>P-37-015553*</td>
<td>Scales Office and Salvage Scales, Consolidated Aircraft Plant No. 1</td>
<td>10x40 feet</td>
<td></td>
</tr>
<tr>
<td>P-37-015554</td>
<td>Southern Footbridge, Consolidated Aircraft Plant No. 1</td>
<td>30x200 feet</td>
<td></td>
</tr>
<tr>
<td>P-37-021701</td>
<td>Sarah Brock Residence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-37-023712</td>
<td>Neoclassical Bungalow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-37-023717</td>
<td>1930s Apartment Building</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-37-023718</td>
<td>Two 1940s Buildings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-37-023719</td>
<td>1927 Spanish Colonial Building</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-37-023721</td>
<td>1890 Folk Victorian House</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-37-023722</td>
<td>1960 Duplex</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>P-37-023723</td>
<td>1912 California Bungalow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-37-023724</td>
<td>1906 Colonial Revival House</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-37-023725</td>
<td>2157 Union Street House</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-37-023726</td>
<td>Circa 1910 Neoclassical Revival House</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-37-023727</td>
<td>1920s California Bungalow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-37-023728</td>
<td>1912 Colonial Revival Duplex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-37-023729</td>
<td>1907 Neoclassical Revival House</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-37-023730</td>
<td>1937 Spanish Eclectic House</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-37-023731</td>
<td>1911 Craftsman House</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-37-023732</td>
<td>1929 Mission Revival Apartment Building</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-37-023737</td>
<td>1930s Apartment Building</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-37-023738</td>
<td>1906 Craftsman House</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-37-023739</td>
<td>1930s Stucco Building</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-37-023914</td>
<td>Mission Brewery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-37-024258</td>
<td>Isolated Historic Artifacts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-37-028455</td>
<td>1904 Georgian Colonial Residence</td>
<td>57,300.77 square meters</td>
<td>Jason Miller, RMW Paleo Associates; Don Cole and Jack Frost</td>
</tr>
<tr>
<td>P-37-028552</td>
<td>Segment of Midway Drive</td>
<td>57,300.77 square meters</td>
<td>City of San Diego</td>
</tr>
<tr>
<td>P-37-028620*</td>
<td>United Airlines 1931 Hangar and</td>
<td>75 square feet</td>
<td>Stephen Van Wormer,</td>
</tr>
<tr>
<td>Site Number</td>
<td>Site Type</td>
<td>Site Dimensions</td>
<td>Report Reference/Recorded By</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>P-37-028904</td>
<td>Terminal (ASIG Building)</td>
<td></td>
<td>Walter Enterprises</td>
</tr>
<tr>
<td>P-37-030108</td>
<td>Spanish Landing Park</td>
<td>4,807.52 square meters</td>
<td>Julie Roy</td>
</tr>
<tr>
<td>P-37-030583</td>
<td>Rattray House</td>
<td>0.1148 acre</td>
<td>University of San Diego</td>
</tr>
<tr>
<td>P-37-030946</td>
<td>Don and Rita Keller/Lloyd Ruocco House</td>
<td>2,583 square feet</td>
<td>Scott Moomjian</td>
</tr>
<tr>
<td>P-37-032934</td>
<td>1911 Arrow Packing Company Fish Cannery</td>
<td>Unknown</td>
<td>URS Corporation</td>
</tr>
<tr>
<td>P-37-033270</td>
<td>1946 Canada Dry Building</td>
<td>16x44 inches</td>
<td>K.A. Crawford and Marie Burke Lia</td>
</tr>
<tr>
<td>P-37-033271</td>
<td>1890s to 1920s Blue Label Ketchup Bottle</td>
<td>N/A</td>
<td>Nanthanial Yerka, Laguna Mountain Environmental, Inc.</td>
</tr>
<tr>
<td>P-37-033555</td>
<td>1941 Top’s Restaurant and Motel</td>
<td>Unknown</td>
<td>Kathleen Crawford, Office of Marie Burke Lia</td>
</tr>
<tr>
<td>P-37-033896</td>
<td>Historic Boat</td>
<td>3.4x19.5 feet</td>
<td>Doug Mengers, Matthew DeCarlo, and Jerome Schaefer, ASM Affiliates</td>
</tr>
<tr>
<td>P-37-035652</td>
<td>1927 Pacific Technical University Building</td>
<td>50x100 feet</td>
<td>K.A. Crawford and Marie Burke Lia</td>
</tr>
<tr>
<td>P-37-035841</td>
<td>Circa 1964 Military Barracks</td>
<td>Unknown</td>
<td>Justin Castells, EBI Consulting</td>
</tr>
<tr>
<td>SDI-36</td>
<td>Probable Prehistoric Campsite</td>
<td>5,433.25</td>
<td>N.C. Nelson</td>
</tr>
<tr>
<td>Site Number</td>
<td>Site Type</td>
<td>Site Dimensions</td>
<td>Report Reference/Recorded By</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>SDI-37</td>
<td></td>
<td>2,944.38 square meters</td>
<td></td>
</tr>
<tr>
<td>SDI-53</td>
<td></td>
<td>4,668.02 square meters</td>
<td></td>
</tr>
<tr>
<td>SDI-13,329/H</td>
<td>Historic Refuse Deposit</td>
<td>8x5 feet</td>
<td>Richard Olson and Sue Wade, Advanced Sciences, Inc.</td>
</tr>
<tr>
<td>SDI-13,761/H</td>
<td>The Barth Foundry Historic Dump</td>
<td>3x50 meters</td>
<td>Jerry Schaefer, Brian F. Mooney Associates; updated by R. Greenlee and C. Letter, Garcia & Associates</td>
</tr>
<tr>
<td>SDI-14,018/H</td>
<td>Historic Headstones and Graves of Captain and Nell Woodworth</td>
<td>60x160 meters</td>
<td>Del James, and Steven Briggs, James & Briggs Archaeological Services</td>
</tr>
<tr>
<td>SDI-14,062/H</td>
<td>Historic Concrete Foundations</td>
<td>2,535.47 square meters</td>
<td>A. Pigniolo and L. Lilburn, KEA Environmental</td>
</tr>
<tr>
<td>SDI-16,634</td>
<td>Historic Trash Dump</td>
<td>5x8 meters</td>
<td>Del James, James & Briggs Archaeological Services</td>
</tr>
<tr>
<td>SDI-16,926</td>
<td>Historic Trash Deposit</td>
<td>1x21 meters</td>
<td>Robert Case, Mooney-Jones & Stokes</td>
</tr>
<tr>
<td>SDI-16,927</td>
<td></td>
<td>21x75 meters</td>
<td></td>
</tr>
<tr>
<td>SDI-17,145</td>
<td>1920s Dump</td>
<td>6x10 feet</td>
<td>Stephen Van Wormer</td>
</tr>
<tr>
<td>SDI-18,401*</td>
<td>Ryan Aeronautical Company Historic District</td>
<td>233,258.66 square meters</td>
<td>Stephen Van Wormer, Walter Enterprises</td>
</tr>
<tr>
<td>SDI-18,584</td>
<td>Historic Dump</td>
<td>150x200 feet</td>
<td>Elizabeth Potter, ASM Affiliates</td>
</tr>
<tr>
<td>SDI-20,263</td>
<td>Historic Refuse Deposit</td>
<td>3x3 feet</td>
<td>Jennifer Kraft, Brian F. Smith and Associates, Inc.</td>
</tr>
<tr>
<td>SDI-20,663</td>
<td></td>
<td>60x210 feet</td>
<td>Tracy Stropes, Brian F. Smith and Associates, Inc.</td>
</tr>
<tr>
<td>SDI-20,861</td>
<td>Historic Trash Dump</td>
<td>49x117 feet</td>
<td>Robert Case, Laguna Mountain Environmental, Inc.</td>
</tr>
</tbody>
</table>

*Located within the project APE
Two hundred and fifty-three historic addresses have been recorded within one mile of the project APE, mostly clustered to the north and east of the project. Only one, 2340 Stillwater Road, is located within the project boundaries, an evaluation of which is included in this study (see Section 3.3.6).

Sites P-37-015531 through P-37-015550, P-37-015552, and P-37-015553 were recorded within the current APE as part of the Final Environmental Impact Report for the General Dynamics Facility Demolition Project (KEA Environmental 1996). Of these sites, six were determined eligible for listing within the Consolidated Aircraft Plant No. 1 Historic District (Van Wormer 1996b); however, all buildings except for P-37-015548 were removed between 1996 and 2000.

Of the 47 buildings in the Teledyne-Ryan Complex (Van Wormer and Robbins-Wade 2006), 17 were recorded as contributing historic resources to the Ryan Aeronautical Company Historic District (recorded as SDI-18,401) and 30 were recorded as non-contributing resources (URS Corporation 2009a). Sites SDI-18,401 and P-37-028620 were recorded within the current APE as a result of the historic architectural survey conducted by Affinis for the San Diego Airport Master Plan Update in 2005 (Van Wormer and Robbins-Wade 2006). Site SDI-18,401, the Ryan Aeronautical Company Historic District, was demolished in 2010. The only previously recorded sites still remaining within the project APE are P-37-015548 (Convair wind tunnel) and P-37-028620 (United Airlines hangar and terminal).

Table 1.2–2
Archaeological Studies Within One Mile of the Project

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter, Ruth 1999</td>
<td>Results of the Historic Building Assessment for 1128 Oliver Avenue, San Diego, California. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.</td>
<td></td>
</tr>
</tbody>
</table>
Cultural Resources Reports

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Location</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>A Cultural Resources Survey Using the Archaeological Resources Report Form (Appendix D) for the Veterans Village of San Diego Project, San Diego, California. ASM Affiliates.</td>
<td>Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981a</td>
<td>Historic Resources Inventory for Uptown Area, San Diego, California. Department of Parks and Recreation.</td>
<td>Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981b</td>
<td>Historic Resources Inventory for Middletown Area, San Diego, California Completed by the University of San Diego, January 1981. Department of Parks and Recreation.</td>
<td>Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Draft Environmental Impact Report for the Proposed San Diego County Administration Center Waterfront Park Development and Master Plan.</td>
<td>Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013b</td>
<td>Section 106 Consultation for Speaker System Installation, Building 31 and Parade Deck, Marine Corps Recruit Depot Historic District, San Diego. United States Marine Corps.</td>
<td>Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
University, San Diego, California.

2013c Section 106 Consultation for Installation of Three Fire Pits, West Side of Building Ten, Marine Corps Recruit Depot Historic District, San Diego. United States Marine Corps. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2013d Section 106 Consultation for HVAC Installation, Building 16, Marine Corps Recruit Depot Historic District, San Diego. United States Marine Corps. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2013e Section 106 Consultation for HVAC Installation, Building Eight, Marine Corps Recruit Depot Historic District, San Diego. United States Marine Corps. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Burke Lia, Marie
1991 Moorsteen Furniture Manufacturing Company Building, 2141-2165 India Street (APN 533-129-1). Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2007 1907 Kettner Boulevard, San Diego, California 92101. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Burke Lia, Marie, Ray Brandes, Susan H. Carrico, Kathleen Flanigan, Anne Pierce Cooper, and Kathleen Crawford
1989 Historic Site Inventory of Harborview. Marie Burke Lia and Associates. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Carrico, Richard
1977 Cultural Resource Inventory of the United States Coast Guard Air Station Administration Building, San Diego, California. Westec Services, Inc. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Carrillo, Charles and Charles Bull
1979 Archaeological Investigation of the MTDB Fixed Guideway Project Route, Center City to San Ysidro. RECON. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Case, Robert P.

Case, Robert and Carol J. Serr
2005 Cultural Resources Mitigation Monitoring Report for the Sewer Group 680 Project (LDR No. 41-0386), Bankers Hill City of San Diego, California. Mooney, Jones & Stokes. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2006 Cultural Resources Mitigation Monitoring Report for the Sewer Group 6814 Project (LDR No. 40-0187), Uptown Community City of San Diego, California. Mooney Jones and Stokes. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Case, Robert P. and Richard L. Carrico

Caterino, David
2005 The Cemeteries and Gravestones of San Diego County: An Archaeological Study. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Chiang, Christina

City of San Diego
1993 DEIR for North Metro Trunk Sewer. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

1996a Proposed Mitigated Negative Declaration of the Group Job #487. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

1996b Mitigated Negative Declaration for Sewer and Water Group Job No. 639. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

1998 Seismic Retrofit Programmatic Agreement for Garnet Ave, North Harbor Drive West Mission Bay. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2001c Public Notice of a Proposed Mitigated Negative Declaration Sewer Main Replacement Group Job 672. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2002 Public Notice of a Proposed Mitigated Negative Declaration; Naval Training Center Park General Development Plan. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2003 MITIGATED Negative Declaration for the Relocation of Buildings 158, 159, and 207 at the Naval Training Center (NTC). Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2013 The Upas Street Pipeline Replacement Project. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2014 Sewer Group Job 743. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Cook, John
2005 Archaeological Monitoring for the Kearney Property in Crest, San Diego County, California. ASM Affiliates. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Cordileone, Joe and Diana Cordileone
2010 Hans Hirte Residence 2465 Curlew Street San Diego, California 92101. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Crawford, Kathleen A.
2011a Fat City Steakhouse, China Camp, Denny’s, Formerly Top’s Restaurant and Motel. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.
The SDIA Airport Development Plan Project

2011b 1769-1797 San Diego Avenue, San Diego, CA 92110. Office of Marie Burke Lia. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2012a 2430 Union Street, San Diego, CA 92101. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2012b 1885 Hancock Street, San Diego, CA 92110. Office of Marie Burke Lia. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2014 2119 Kettner Boulevard, San Diego, CA 92101. Marie Burke Lia. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Crawford, Kathleen and Richard Carrico
1995 Final Historic Properties Phase II Eligibility Study of the Naval Training Center, San Diego County, CA. Ogden Environmental. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Crawford, Kathleen and Scott Moomjian
2005 Historical Assessment of the Commercial Buildings Located at 3621-3649 India Street, San Diego, California 92103. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Denardo, Carole, Rachael Greenlee, and Caprice Harper

Duke, Curt
2002 Cultural Resource Assessment AT&T Wireless Services Facility No. 10012, San Diego County, CA. LSA. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Enriquez, Paul

Farley, Sarah L.
2012 Addendum to FCC Form 620 Harbor Drive Harbor Island Drive (ROW), San Diego, San Diego County, California 92101, EBI Project #61110632. EBI Consulting. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.
Garcia-Herbst, Arleen
2015 Cultural Resources Inventory for the Pacific Beach Pipeline Project, City of San Diego, CA. Spindrift Archaeological Consulting, LLC. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Gardner, Jill and Mark Becker
2010 Archaeological Monitoring Report for the Veterans Village of San Diego Project, San Diego, California. ASM Affiliates. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Globa, Victor
2012 San Diego International Airport Draft Environmental Assessment Runway 9 Displaced Threshold Project San Diego, California Section 106 Consultation. Federal Aviation Administration. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2013 San Diego International Airport, Northside Improvements Project, San Diego CA. Federal Aviation Administration. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Heritage Architecture and Planning
2008 2415-2421 Union Street, San Diego, CA 92101. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Herrmann, Myra

Huey, Danielle

IS Architecture
2008 Historical Resources Board Nomination for the Ralph H. Pratt Speculative House 3503 Jackdaw Street San Diego, California 92103. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Jackson Research Projects
Jacques, Terri and Richard Carrico
1981 Cultural Resources Inventory of the United States Coast Guard Air Station (Five Structures)
San Diego, California. Westec Services, Inc. Unpublished report on file at the South Coastal
Information Center at San Diego State University, San Diego, California.

KEA Environmental
1996 General Dynamic Facilities Demolition Project: Final EIR. Unpublished report on file at the
South Coastal Information Center at San Diego State University, San Diego, California.

Kim, Steve
2008 Proposed Federal Aviation Administration (FAA) Airport Surface Detection Equipment-
Model X (ASDE-X) Upgrade System to Serve San Diego International Airport (SAN), San
Diego, California. Federal Aviation Administration. Unpublished report on file at the South
Coastal Information Center at San Diego State University, San Diego, California.

Kraft, Jennifer R. and Brian F. Smith
Brian F. Smith and Associates, Inc. Unpublished report on file at the South Coastal Information
Center at San Diego State University, San Diego, California.

2013 Historic Structure Assessment, 2603 Dove Street, San Diego, California (APN 452-674-32).
Brian F. Smith and Associates, Inc. Unpublished report on file at the South Coastal Information
Center at San Diego State University, San Diego, California.

Smith and Associates, Inc. Unpublished report on file at the South Coastal Information Center
at San Diego State University, San Diego, California.

2014b Phase I Cultural Resource Survey for the 915 Grape Street Project City of San Diego. Brian
F. Smith and Associates, Inc. Unpublished report on file at the South Coastal Information Center
at San Diego State University, San Diego, California.

Brian F. Smith and Associates, Inc. Unpublished report on file at the South Coastal Information
Center at San Diego State University, San Diego, California.

KTU+A Planning and Landscape Architecture
2007 Marine Corps Recruit Depot Historic District Landscape Plan, Base Exterior Architecture Plan
– Appendix D. Unpublished report on file at the South Coastal Information Center at San
Diego State University, San Diego, California.

Kyle, Carolyn
2005a Cultural Resource Monitoring for the Naval Training Center North Promenade Project, City of

The SDIA Airport Development Plan Project
San Diego, California. Kyle Consulting. Unpublished report on file at the South Coastal
Information Center at San Diego State University, San Diego, California.

2005b Cultural Resource Monitoring for the Naval Training Center Central Promenade Project City
of San Diego, California. Kyle Consulting. Unpublished report on file at the South Coastal
Information Center at San Diego State University, San Diego, California.

2006a Cultural Resource Monitoring for the Naval Training Center Parking Lot G Project City of San
Diego, California. Kyle Consulting. Unpublished report on file at the South Coastal
Information Center at San Diego State University, San Diego, California.

2006b Cultural Resource Monitoring and Site Testing for the Sail Ho Golf Course Project Located
Within the Former Naval Training Center City of San Diego. Kyle Consulting. Unpublished
report on file at the South Coastal Information Center at San Diego State University, San Diego,
California.

2009 Cultural Resource Monitoring for the Shoreline Plaza Project Located Within the Former Naval
Training Center, City of San Diego, California. Kyle Consulting. Unpublished report on file
at the South Coastal Information Center at San Diego State University, San Diego, California.

Kyle, Carolyn and et al.
Gallegos & Associates. Unpublished report on file at the South Coastal Information Center at
San Diego State University, San Diego, California.

Kyle, Carolyn and Roxana L. Phillips
1998 Cultural Resource Constraint Study for the North Bay Redevelopment Project City of San
Diego, California. Gallegos & Associates. Unpublished report on file at the South Coastal
Information Center at San Diego State University, San Diego, California.

Kyle, Carolyn, Roxana L. Phillips, Susan Bugbee, and Dennis R. Gallegos
1998 Cultural Resource Constraints Study for the North Bay Redevelopment Project, City of San
Diego, CA. Gallegos and Associates. Unpublished report on file at the South Coastal
Information Center at San Diego State University, San Diego, California.

Loftus, Shannon
2011a Cultural Resource Records Search and Site Survey, AT&T Site SD0332, Spanish Landing,
4000 Block, Harbor Drive Spanish Landing Next to Comfort Station #2, San Diego, San Diego
County, California 92101. Ace Environmental, LLC. Unpublished report on file at the South
Coastal Information Center at San Diego State University, San Diego, California.

2011b Cultural Resource Records Search and Site Survey, AT&T Site SS0121, Commuter Terminal,
San Diego Port Authority Right-of-Way on Harbor Drive, San Diego, San Diego County,
California 92101. Ace Environmental, LLC. Unpublished report on file at the South Coastal
Information Center at San Diego State University, San Diego, California.
2012a AT&T Site SD0391, McMillin Permanent, 2750 Womble Road, San Diego, San Diego County, California 92106. Ace Environmental. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2012b Cultural Resources Records Search and Site Survey, AT&T Site SS0106, Residence Inn, 1747 Pacific Highway, San Diego, San Diego County, California 92101. Ace Environmental, Inc. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2013 Cultural Resource Records Search and Site Survey, AT&T Site SD0391, Point Loma Temp, 2590 Womble Road, Vista, San Diego County, California 92106. Ace Environmental, LLC. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Macaskill, Jaye E.

2011 Nomination to the City of San Diego Register of Historical Resources: The Mission Brewery Bottling Plant, 1747 Hancock Street, San Diego, CA 92101. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Manley, William R., Sue A. Wade, and Matt C. Bischoff

May, Ronald V. and Dale Ballou May

May, Vonn Marie

2006 Uptown Historic Architectural and Cultural Landscape Reconnaissance Survey. IS Architecture. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Miller, Jason

2001 Archaeological Monitoring During Excavation of Sewer Group Job 635. RMW Paleo Associates. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Moomjian, Scott A.

2007a Historical Assessment of the Elwyn B. (Jay) Jr. & Marian Gould House, 2333 Albatross Street, San Diego, California 92101. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.
2007b Historical Assessment of the Don and Rita Keller/Lloyd Ruocco House, 1433 Puterbaugh Street, San Diego, California 92103. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Nakhshab, Soheil

Olsen, Richard and Sue Wade

Palomar, Percival C.

Perez, Don C.

2014a Cultural Resources Survey, SAN Terminal 2 South/Ensite #20302 (282094), 4051 Harbor Drive, San Diego, San Diego County, California 92101. EBI Consulting. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2014b Cultural Resources Survey, Sassafras/Ensite #20787 (280742), 3420 Kettner Boulevard, San Diego, San Diego County, California 92101, EBI Project No. 61146854. EBI Consulting. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Pierson, Larry J.

1.0–47
Diego State University, San Diego, California.

Pigniolo, Andrew and Kimberly Lauko
2005 Cultural Resource Monitoring Report for the Sewer Group 700 Project, City of San Diego, California. Laguna Mountain Environmental, Inc. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Potter, Elizabeth and Jerry Schaefer
2007 Archaeological Monitoring of the A-1 Storage Project, San Diego, California. ASM Affiliates. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Reddy, Seetha N.
2007 A Programmatic Approach for National Register Eligibility Determinations of Prehistoric Sites Within the Southern Coast Archaeological Region, California. Statistical Research, Inc. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Reeves, Donald J. and Mark Sams

Rickling, Brian S.

Robbins-Wade, Mary
2002 Doma Lofts by City Mark – Archaeological Monitoring (Affinis Job No. 1611). Affinis Environmental Services. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Rosen, Martin
2000 Cultural Resources North Harbor Drive Bridge- #57C-015. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Roth, Linda and Judy Berryman
1995 Historic Properties Eligibility Study of Pier 9, Naval Training Center, San Diego, San Diego County. Roth and Berryman. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Roy, Julie

SANDAG
2013 Mid-Coast Corridor Transit Project: Historic Property Effects Report. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

San Diego Unified Port District
2001 Taxiway C Extension & Port Master Plan Amendment, San Diego International Airport, San Diego, California. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Schaefer, Jerry

Smith, Brian F.

Smoyer, Walter J. and Elizabeth D. Smoyer
2006 Historical Assessment of the Residence Located at 1603 Torrance Street, San Diego, California 92103. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Stalters, Dave
2012 Section 106 Consultation for Repairs to Hangar Two, Coast Guard Air Station San Diego, San Diego County. U.S. Coast Guard. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2016 Signs on Hangar One and Hangar Two at Air Station San Diego, 2710 Harbor Drive, San Diego County. United States Coast Guard. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Stropes, J.R.K. and Brian F. Smith

Stropes, Tracy A.

Stropes, Tracy A. and Brian F. Smith

Tang, Bai, Michael Hogan, Mariam Dahdul, Teresa Woodward, and Daniel Ballester
2002 Historical Resources Compliance Report Track Improvement, Between San Diego and
National City, and New Locomotive/Car Service and Inspection Facility in National City, San Diego County, CA. CRM Tech. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Tarasuck, Marc
1995 Architectural and Historical Assessment for 3042 State Street, San Diego, California 92103. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

United States Marine Corps

2011 Marine Corps Recruit Depot Proposing to Demolish an Addition to Building 30. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2012 Section 106 Consultation for Modifications to ATM Machine, Building 10, Marine Corps Recruit Depot, San Diego. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

URS Corporation
2009a Results of Architectural History Survey for Verizon Cellular Communications Tower Site – Solar Caterpillar 2200 Pacific Highway (APN: 760-071-03), San Diego, CA 92101. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

U.S. Coast Guard
2007 Removal of an Existing Concrete Floating Dock at the CG Sector San Diego, 2710 North Harbor Drive, San Diego, California. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

U.S. Department of Homeland Security
2007 Draft Environmental Assessment: Construction of a Patrol Boat Pier and Floating Dock, United States Coast Guard Sector, San Diego, Harbor Drive Facility Port of San Diego, California. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.
U.S. Department of Transportation

2011 Section 106 Consultation for the Mid-Coast Corridor Transit Project, San Diego County, CA. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Van Wormer, Stephen

Van Wormer, Stephen and Mary Robbins-Wade

Van Wormer, Stephen R., Susan D. Walter, and Dennis R. Gallegos

Various

N.d. Mission Brewery/American Agar Company. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

N.d. Bernardini Building. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

N.d. Dutch Flats/Ryan Field. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

N.d. General Dynamics Facilities, 3302 Pacific Highway, San Diego, CA. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

N.d. Marine Corps Recruit Depot, Barnett Avenue, San Diego, California. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

N.d. Spanish Landing Site. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

N.d. Tucker House, 2470 Union Street, San Diego, California 92101. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

N.d. Naval Training Station Historic District – Amendment to the National Register of Historic
Places Registration Form. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Wade, Sue
1990 Historic Properties Inventory for Secondary Treatment Clean Water Program for Greater San Diego: Confidential Appendices. RECON. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Wahoff, Tanya and Andrew L. York
2003 Cultural Resources Monitoring for Sewer Group Job 672, San Diego, California. EDAW, Inc. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Weatherford, Ginger

Westec Services, Inc.

Widell, Cherilyn

Wilson, Stacie

Wolf, Scott and Sinead Ni Ghabhlain
2012 Results of Archaeological Monitoring for the Broadstone Little Italy Project, San Diego, California. ASM Affiliates, Inc. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

BFSA also reviewed the following historic sources:

- The National Register of Historic Places Index
- The Office of Historic Preservation, Archaeological Determinations of Eligibility
- The Office of Historic Preservation, Directory of Properties in the Historic Property
1.0–54

Data File

• San Diego County 1872 map
• San Diego County Historic Roads (1769-1885)
• *Point Loma* 1953 USGS topographic map (7.5-minute series)

These sources did not indicate the presence of archaeological resources within or immediately adjacent to the project.

1.3 Applicable Regulations

Resource importance is assigned to districts, sites, buildings, structures, and objects that possess exceptional value or quality illustrating or interpreting the heritage of San Diego County in history, architecture, archaeology, engineering, and culture. A number of criteria are used in demonstrating resource importance. Specifically, criteria outlined in CEQA provide the guidance for making such a determination. The following sections detail the criteria that a resource must meet in order to be determined important.

1.3.1 California Environmental Quality Act

According to CEQA, §15064.5(a), the term “historical resource” includes the following:

1) A resource listed in, or determined to be eligible by, the State Historical Resources Commission, for listing in the CRHR (Public Resources Code [PRC] SS5024.1, Title 14 CCR, Section 4850 et seq.).

2) A resource included in a local register of historical resources, as defined in Section 5020.1(k) of the PRC or identified as significant in an historical resource survey meeting the requirements of Section 5024.1(g) of the PRC, shall be presumed to be historically or culturally significant. Public agencies must treat any such resource as significant unless the preponderance of evidence demonstrates that it is not historically or culturally significant.

3) Any object, building, structure, site, area, place, record, or manuscript, which a lead agency determines to be historically significant or significant in the architectural, engineering, scientific, economic, agricultural, educational, social, political, military, or cultural annals of California may be considered to be an historical resource, provided the lead agency’s determination is supported by substantial evidence in light of the whole record. Generally, a resource shall be considered by the lead agency to be “historically significant” if the resource meets the criteria for listing on the CRHR (PRC SS5024.1, Title 14, Section 4852), including the following:

 a) Is associated with events that have made a significant contribution to the broad patterns of California’s history and cultural heritage;
b) Is associated with the lives of persons important in our past;

c) Embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic values; or

d) Has yielded, or may be likely to yield, information important in prehistory or history.

4) The fact that a resource is not listed in, or determined eligible for listing in, the CRHR, not included in a local register of historical resources (pursuant to Section 5020.1(k) of the PRC), or identified in an historical resources survey (meeting the criteria in Section 5024.1[g] of the PRC) does not preclude a lead agency from determining that the resource may be an historical resource as defined in PRC Section 5020.1(j) or 5024.1.

According to CEQA, §15064.5(b), a project with an effect that may cause a substantial adverse change in the significance of a historic resource is a project that may have a significant effect on the environment. CEQA defines a substantial adverse change as:

1) Substantial adverse change in the significance of an historical resource means physical demolition, destruction, relocation, or alteration of the resource or its immediate surroundings such that the significance of an historical resource would be materially impaired.

2) The significance of an historical resource is materially impaired when a project:

 a) Demolishes or materially alters in an adverse manner those physical characteristics of an historical resource that convey its historical significance and that justify its inclusion in, or eligibility for, inclusion in the CRHR; or

 b) Demolishes or materially alters in an adverse manner those physical characteristics that account for its inclusion in a local register of historical resources pursuant to Section 5020.1(k) of the PRC or its identification in an historical resources survey meeting the requirements of Section 5024.1(g) of the PRC, unless the public agency reviewing the effects of the project establishes by a preponderance of evidence that the resource is not historically or culturally significant; or,

 c) Demolishes or materially alters in an adverse manner those physical characteristics of an historical resource that convey its historical significance and that justify its eligibility for inclusion in the CRHR as determined by a lead agency for purposes of CEQA.
Section 15064.5(c) of CEQA applies to effects on archaeological sites and contains the following additional provisions regarding archaeological sites:

1. When a project will impact an archaeological site, a lead agency shall first determine whether the site is an historical resource, as defined in subsection (a).
2. If a lead agency determines that the archaeological site is an historical resource, it shall refer to the provisions of Section 21084.1 of the PRC, Section 15126.4 of the guidelines, and the limits contained in Section 21083.2 of the PRC do not apply.
3. If an archaeological site does not meet the criteria defined in subsection (a), but does meet the definition of a unique archaeological resource in Section 21803.2 of the PRC, the site shall be treated in accordance with the provisions of Section 21083.2. The time and cost limitations described in PRC Section 21083.2 (c-f) do not apply to surveys and site evaluation activities intended to determine whether the project location contains unique archaeological resources.
4. If an archaeological resource is neither a unique archaeological nor an historical resource, the effects of the project on those resources shall not be considered a significant effect on the environment. It shall be sufficient that both the resource and the effect on it are noted in the Initial Study (IS) or Environmental Impact Report, if one is prepared to address impacts on other resources, but they need not be considered further in the CEQA process.

Section 15064.5 (d) and (e) contains additional provisions regarding human remains. Regarding Native American human remains, paragraph (d) provides:

(d) When an IS identifies the existence of, or the probable likelihood, of Native American human remains within the project, the lead agency shall work with the appropriate Native Americans as identified by the NAHC as provided in PRC SS5097.98. The applicant may develop an agreement for treating or disposing of, with appropriate dignity, the human remains and any items associated with Native American burials with the appropriate Native Americans as identified by the NAHC. Action implementing such an agreement is exempt from:

1) The general prohibition on disinterring, disturbing, or removing human remains from any location other than a dedicated cemetery (Health and Safety Code Section 7050.5).
2) The requirements of CEQA and the Coastal Act.
1.3.2 Federal Significance Criteria

The goal of numerous laws, regulations, and statutes is to protect and direct the management of historic resources. These include:

- The Antiquities Act of 1906,
- The Historic Sites Act of 1935,
- The Reservoir Salvage Act of 1960,
- The NHPA of 1966,
- The NEPA of 1969,
- Executive Order 11593 (Projection and Enhancement of the Cultural Environment, 1971),
- Revisions to 36 CFR 800 (Protection of Historic Properties, 1/10/1986),
- The Archaeological and Historical Preservation Act of 1974,
- The American Indian Religious Freedom Joint Resolution of 1978,
- The Archaeological Resources Protection Act of 1979, and

Collectively, these regulations and guidelines establish a comprehensive program for the identification, evaluation, and treatment of historic resources. Resource importance is assigned to districts, sites, buildings, structures, and objects that possess exceptional value or quality illustrating or interpreting the heritage of San Diego County in history, architecture, archaeology, engineering, and culture. A number of criteria are used in demonstrating resource importance. Specifically, criteria outlined in Section 106 of the NHPA provide the guidance for making such a determination.

The four primary evaluation criteria used to determine a resource’s eligibility to the NRHP, in accordance with the regulations outlined in 36 CFR 800, are identified by 36 CFR 60.4. Historic resource properties may be considered eligible for listing on the NRHP if they meet one or more of the following criteria identified in 36 CFR 60.4:

(A) Is associated with events that have made a significant contribution to the broad patterns of our history and cultural heritage;
(B) Is associated with the lives of persons important in our past;
(C) Embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic values; or
(D) Has yielded, or may be likely to yield, information important in prehistory or history.
If a resource is determined to be not important under these criteria, it is assumed that the resource cannot be significantly impacted, and therefore, mitigation measures are not warranted. However, any resources found to be important according to these criteria must be assessed for project-related actions that could directly or indirectly impact such resources. Impacts that adversely affect important resources are considered to be significant impacts for which mitigating measures are warranted.
2.0 RESEARCH DESIGN

The primary goal of the research design is to attempt to understand the way in which humans have used the land and resources within the project through time, as well as to aid in the determination of resource significance. For the current project, the study area under investigation is the coast of San Diego Bay and the San Diego River Valley. The scope of work for the historic resources study conducted for the project included a Class III survey of the SDIA Airport Development Plan APE. Given the area involved and the recorded presence of archaeological sites, the research design for this project was focused upon realistic study options. Since the main objective of the investigation was to identify the presence of and potential impacts to historic resources, the goal here is not necessarily to answer wide-reaching theories regarding the development of early southern California, but to investigate the role and importance of the identified resources. Nevertheless, the assessment of the significance of a resource must take into consideration a variety of characteristics, as well as the ability of the resource to address regional research topics and issues.

Although survey programs are limited in terms of the amount of information available, several specific research questions were developed that could be used to guide the initial investigations of any observed cultural resources. The following research questions take into account the small size and location of the project discussed above.

Research Questions:

• Can located historic resources be associated with airport development and individuals associated with airport expansion?
• Do the types of located historic resources allow a site activity/function to be determined from a preliminary investigation? Can they be tied to commercial uses at the airport?
• How do the located sites compare to others reported from different surveys conducted in the area?
• How do the located sites contribute to major historic events, such as World War II?

Data Needs

At the evaluation level, the principal research objective is a generalized investigation of changing settlement patterns in both the prehistoric and historic periods within the study area. The overall goal is to understand settlement and resource procurement patterns of the project area occupants. Therefore, adequate information on site function, context, and chronology from an archaeological perspective is essential for the investigation. The fieldwork and archival research were undertaken with the following primary research goals in mind:

1) To identify historic resources occurring within the project;
2) To determine, if possible, site type and function, context of the resource, and
chronological placement of each historic resource identified;
3) To place each historic resource identified within a regional perspective; and
4) To provide recommendations for the treatment of each of the historic resources identified.
3.0 ANALYSIS OF PROJECT EFFECTS

The historic resources study of the project consisted of an institutional records search, an intensive survey of the entire 663.8-acre project, and the detailed recordation of all identified archaeological sites. This study was conducted in conformance with Section 21083.2 of the California PRC, CEQA, Section 106 of the NHPA, and the NEPA of 1969. Specific definitions for archaeological resource type(s) used in this report are those established by the State Historic Preservation Office (SHPO 1995).

3.1 Survey Methods

The survey methodology employed during the current investigation followed standard archaeological field procedures and was sufficient to accomplish a thorough assessment of the project. Senior Project Archaeologist Jennifer Stropes and historic analyst Kimberly Ellis conducted the intensive pedestrian survey on September 5 and 8, 2017 under the direction of Principal Investigator Brian Smith. The airport facility is essentially an expanse of concrete and asphalt surrounded by buildings and roads. Typical archaeological/historical survey protocols were unnecessary and were instead replaced by a review of all standing structures. A survey of the concrete runways and taxiways was deemed unnecessary.

Prehistoric resources are unlikely at this location due to the fact that the area was characterized as a tidal mudflat likely during the entirety of human occupation in San Diego. As occupation of a tidal mudflat is very unlikely, the potential for prehistoric sites in the airport APE was identified as low to nonexistent. Despite development covering the vast majority of the project, all potentially sensitive areas where historic resources might be located were closely inspected. Photographs were taken of all structures 50 years of age or older. The survey process was limited in some areas by airport operations. Specifically, the runways and taxiways were not surveyed due to the dangers of moving aircraft. All previously undocumented historic structures were recorded as necessary, and all previously recorded resources were updated, according to the Office of Historic Preservation’s manual, Instructions for Recording Historical Resources using Department of Parks and Recreation (DPR) forms.

3.2 Survey Results

The survey methodology employed during the current investigation followed standard archaeological field procedures and was sufficient to accomplish a thorough assessment of the project. The survey process was limited in some areas by airport operations, particularly along the runways and taxiways, which were not surveyed due to safety concerns. Photographs documenting survey discoveries and overall survey conditions were taken frequently.

The SDIA is characterized by development, including the construction of modern structures, paved roads, parking lots, runways, and taxiways. Because the land upon which the airport was constructed was dredged from the bottom of the San Diego Bay, prehistoric features
or deposits were not expected to be encountered. Although the potential for historic deposits associated with historic use of the airport does exist, airport-related structures and associated hardscape cover practically all of the ground surface, effectively masking any buried resources.

During the survey, seven unrecorded historic resources (P-37-036756 through P-37-036762) were identified and two previously recorded historic resources (P-37-015548 and P-37-028620) were relocated within the SDIA Airport Development Plan APE. The list of historic resources within the project and their respective evaluation results sections are provided in Table 3.2–1. The locations of the resources identified within the APE (and those no longer extant within the APE) are illustrated on Figure 3.2–1. Figure 3.2–2 shows the buildings within the APE with their corresponding dates of construction and dates of planned demolition.

Table 3.2–1

<table>
<thead>
<tr>
<th>Site Number</th>
<th>Building Name</th>
<th>Report Acronym</th>
<th>Report Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-37-036756</td>
<td>Terminal 1</td>
<td>-</td>
<td>3.3.1</td>
</tr>
<tr>
<td>P-37-036757</td>
<td>Terminal 2 East</td>
<td>-</td>
<td>3.3.2</td>
</tr>
<tr>
<td>P-37-036758</td>
<td>Pacific Southwest Airlines administrative and maintenance facility building</td>
<td>PSA AMF building</td>
<td>3.3.3</td>
</tr>
<tr>
<td>P-37-036759</td>
<td>United Air freight building</td>
<td>UAF building</td>
<td>3.3.4</td>
</tr>
<tr>
<td>P-37-036760</td>
<td>Air Support Facilities building</td>
<td>ASF building</td>
<td>3.3.5</td>
</tr>
<tr>
<td>P-37-036761</td>
<td>Air Oasis hangar building</td>
<td>AOH building</td>
<td>3.3.6</td>
</tr>
<tr>
<td>P-37-028620</td>
<td>United Airlines hangar and terminal building</td>
<td>UAHT building</td>
<td>3.3.7</td>
</tr>
<tr>
<td>P-37-036762</td>
<td>Jet engine overhaul building</td>
<td>JEO building</td>
<td>3.3.8</td>
</tr>
<tr>
<td>P-37-015548</td>
<td>Convair wind tunnel building</td>
<td>CWT building</td>
<td>3.3.9</td>
</tr>
<tr>
<td>P-37-015531</td>
<td>Consolidated Aircraft Plant No. 1 (historic district) – demolished</td>
<td>-</td>
<td>Not discussed</td>
</tr>
<tr>
<td>P-37-028619</td>
<td>Ryan Aeronautical Company Historic District – demolished</td>
<td>-</td>
<td>Not discussed</td>
</tr>
</tbody>
</table>

3.3 Resource Investigations

For sites P-37-036756 through P-37-036762, P-37-015548, and P-37-028620 listed in Table 3.2–1 above, a detailed history, current condition, and NRHP/CRHR evaluation of each building is presented. The significance evaluations for all resources were implemented in accordance with Section 106 of the NHPA, NEPA, and CEQA guidelines.
Figure 3.2–1
Historic Resource Location Map
The SDIA Airport Development Plan Project
Figure 3.2–2
Construction Date and Demolition Plan Map
The SDIA Airport Development Plan Project
3.3.1 Site P-37-036756 – Terminal 1 (Potential Period of Significance 1967)

Resource Description

Construction of the Terminal 1 building was a response to an escalating increase in passengers traveling through Lindbergh Field. Although previous planners focused upon the possibility of relocating the airport, the San Diego City Council and the Harbor Commission ordered that plans be drawn for a new terminal in 1961 (San Diego Union 1961a). In 1963, the Unified Port District selected Paderewski, Dean & Associates to design the “new city airport terminal to be located on Harbor Drive opposite Harbor Island” (San Diego Union 1963). The firm of F.E. Young Construction Co. of San Diego began construction on the new terminal building in November of 1965 (Plate 3.3.1–1).

Prior to designing the Terminal 1 building, Paderewski, Dean & Associates specialized in schools, office buildings, high-rise apartments, and buildings for the Navy (San Diego Union 1965). In designing Terminal 1, Louis Dean, vice president of Paderewski, Dean & Associates, stated that “[t]he only thing certain about the air travel picture is change” (San Diego Unified Port District 1965-1966). As such, it was decided that the airport needed to be “flexible, capable of expansion without limiting the aesthetic qualities” (San Diego Unified Port District 1965-1966). Dean also acknowledged that as the airline passenger is usually in a hurry, loading zones, ticket counters, baggage claim, and parking must all be designed to facilitate maximum efficiency (San Diego Union 1967b).

By the end of the 1965 fiscal year, the total cost of the new terminal and ancillary facilities was close to $7 million. During construction, uninterrupted service was provided for air travelers through continued use of the Ryan Aeronautical Administration building that was being used as a terminal building located on Pacific Highway. When Terminal 1 was completed in 1967, a Lindbergh Field manager indicated that the 1951 terminal (the former Ryan Aeronautical Administration building) would be demolished to make way for light plane servicing, storage, and repair structures (San Diego Union 1967c).
On February 8, 1967, then-California Governor Ronald Reagan was the first passenger to land at Terminal 1, where he then delivered the dedicatory address (Plate 3.3.1–2) (San Diego Unified Port District 1966-1967). Terminal 1 was officially opened to the public and became operational on March 5, 1967. The San Diego Union described Terminal 1 as possessing “beauty, utility and convenience” (San Diego Union 1967d). When built, Terminal 1 was almost 400.00 percent larger than the original 1951 terminal, with a 36,000-square-foot lobby, 300 seats for waiting passengers, an 8,000-square-foot baggage claim area, and 1,450 new parking spaces (San Diego Union 1967b). The walking distance from the parking lots to the ticket counters was reduced from 750 to 400 feet, and from the unloading curbs to the ticket counters from 100 to 45 feet. In 1967, Terminal 1 serviced eight airline companies at 16 gates (Plate 3.3.1–3) (San Diego Union 1967e) and handled 2,177,110 passengers (San Diego Unified Port District 1966-1967).
A site plan has been provided in Figure 3.3.1–1 that color-codes all original and modified portions of the building. In addition, due to the extensive modifications, all portions of the building have also been assigned a letter designation (i.e., A, B, C, etc.), which will be used in all further discussion and evaluation.

The primary (south) façade of Section A remains the same today as when it was built in 1967 (Plates 3.3.1–4 through 3.3.1–6). Section A has an irregular-shaped footprint, a flat roof, and is comprised of a main crescent-shaped portion with two concourse wings that project off the eastern and western portions of the north façade. The crescent-shaped portion of Section A is positioned on an east-west axis. The two wings form separate concourses that each terminate at two identical rotundas. The primary (south) façade of Section A provides public access to the terminal under a wide overhang supported by 18 evenly spaced, poured-concrete columns. The columns taper toward the top where they reach their narrowest point and reveal structural steel (Plate 3.3.1–7). When constructed, the wide overhang was entirely comprised of concrete (Plate 3.3.1–8); however, it currently features a mixture of vinyl and concrete (Plate 3.3.1–9). The concrete ceiling features a deeply coffered waffle-slab roof system that exhibits curved, concave, square indentations that extend from the main structure past the roof overhang (see Plate 3.3.1–9). The coffered indentations on the cantilevered roof overhang are evenly spaced and create a repetitive pattern. The primary (south) façade of Section A currently exhibits is a mix of fixed-pane glass panels, concrete rectangular slabs, and automatic sliding glass doors (see Plate 3.3.1–6).
Plate 3.3.1–6
View of the Primary (South) Façade of Section A, Facing East
The SDIA Airport Development Plan Project
Plate 3.3.1-7
One of the 18 Support Columns on the Primary (South) Façade of Section A, Facing Northeast
The SDIA Airport Development Plan Project
Plate 3.3.1–8

1967 San Diego Union Cover Showing the Concrete Waffle-Slab Roof System
Under the Primary (South) Façade Roof Overhang of Section A, Facing West

The SDIA Airport Development Plan Project
Plate 3.3.1-9

Current View of the Mixed Concrete Waffle-Slab and Vinyl Roof System
Under the Primary (South) Façade Roof Overhang of Section A, Facing West

The SDIA Airport Development Plan Project
The only modifications made to the primary (south) façade of Section A since 1967 include those on the east and central portions of the main crescent-shaped building. At an unknown date, the single band of windows that was present in 1967 (see Plate 3.3.1–5) was removed and replaced with a glass wall of fixed-pane windows with metal trim (Plate 3.3.1–10). In 1997, Section B, a smooth concrete and metal sky bridge (Plate 3.3.1–11), which was designed by SGPA Architecture and Planning (SGPA), was constructed off of a new two-story rectangular structure (Plate 3.3.1–12) on the central portion of the primary (south) façade of Section A to allow pedestrians easy access to a parking area across the street on the south side of the passenger loading zone.

The west façade of Section A features the same wide, coffered, concrete overhang and poured-concrete columns as the south façade (Plate 3.3.1–13). The west façade of Section A also features Section C, a connector wing that was built circa 2000 to 2001 and extends from Terminal 1 to Terminal 2 East (Plate 3.3.1–14). Section C contains a covered walkway and two international gates and features a modern metal overhang and fixed-pane windows (Plate 3.3.1–15). Immediately to the north of Section C is a portion of the original 1967 Section A that features concrete block, a coffered concrete overhang, a fixed-pane window, and three simple, unadorned double-doors (Plate 3.3.1–16).

The north façade of Section A has been extensively modified over time. The westernmost section of the north façade features Section D, a two-story baggage service and office space addition, which was constructed in 1982. The west façade of Section D features concrete block, a coffered concrete overhang, and fixed-pane windows (Plate 3.3.1–17). The north façade of Section D features five open bays that lead to baggage facilities and evenly spaced, rectangular, fixed-pane windows that run the length of the second story (Plate 3.3.1–18).

The Section A west concourse wing projects from the north façade of the main terminal immediately east of Section D and houses Gates 11 through 18. A second story, Section E, was added to the Section A west concourse wing in 1990. The first story of the Section A west concourse wing is a mix of concrete block, smooth stucco, simple metal doors, and fixed-pane windows (Plate 3.3.1–19). Section E also features a mix of concrete block, smooth stucco, and fixed-pane windows (see Plates 3.3.1–19 and Plate 3.3.1–20). The concrete band on the first story (Section A) becomes a coffered overhang on the rotunda portion of the wing (see Plate 3.3.1–20). Most of Section E also exhibits a coffered concrete overhang, except in the areas around the eight gates, which were built out to accommodate the jet bridges, which were added in the 1980s (Plate 3.3.1–21).

Section F was built immediately east of the Section A west concourse wing circa 1994 to 1997. The exterior of Section F is concrete and features a wall of fixed-pane windows (Plate 3.3.1–22). Immediately east of Section F is an original 1967 projecting bay (Section A) that once housed the Interstate Hosts Restaurant (see Plate 3.3.1–3) (San Diego Union 1967b). The projecting bay exhibits a row of fixed-pane windows and a coffered concrete overhang, which matches the overhang on the primary (south) façade of Section A (Plate 3.3.1–23).
Plate 3.3.1–10

2015 View of the East Portion of the Primary (South) Façade of Section A (Right) Showing the New Glass Wall of Fixed-Pane Windows, Facing Northwest

The SDIA Airport Development Plan Project

(Image courtesy of Google Street View)
Plate 3.3.1–11
View of Section B Extending Off the Primary
(South) Façade of Section A, Facing West
The SDIA Airport Development Plan Project
(Image courtesy of Google Street View)
Plate 3.3.1–12
View of the Two-Story Connecting Structure (Section B) on the Primary (South) Façade of Section A, Facing West
The SDIA Airport Development Plan Project
Plate 3.3.1–13

View of the West Façade of the Section A, Facing Northeast

The SDIA Airport Development Plan Project
Plate 3.3.1–14
View of Section C Leading From
Terminal 1 to Terminal 2 East, Facing Southwest
The SDIA Airport Development Plan Project
(Image courtesy of Google Street View)
Plate 3.3.1–15
View of Section C Showing the Covered Walkway and International Terminals, Facing Southwest
The SDIA Airport Development Plan Project
(Image courtesy of Google Street View)
Plate 3.3.1–16
View of the West Façade of a 1967 Portion of
Section A North of Section C, Facing East
The SDIA Airport Development Plan Project
Plate 3.3.1–17

View of the West Façade of Section D, Facing East

The SDIA Airport Development Plan Project
Plate 3.3.1–18
View of the North Façade of Section D, Facing South
The SDIA Airport Development Plan Project
Plate 3.3.1–19

View of the West Façade of the West Concourse Wing (Sections A and E), Facing East

The SDIA Airport Development Plan Project
Plate 3.3.1–20

View of the Northwest Façade of the Rotunda Portion of the West Concourse Wing (Sections A and E), Facing Southeast

The SDIA Airport Development Plan Project
Plate 3.3.1–21

View of the Jet Bridge Connection at Gate 11 on the East Façade of the Rotunda Portion of Sections A and E, Facing West

The SDIA Airport Development Plan Project
Plate 3.3.1–22

View of the North Façade of Section F, Facing South

The SDIA Airport Development Plan Project
Plate 3.3.1–23
View of the North Façade of the Original 1967 Projecting Bay on Section A (Right) and the Northwest Façade of Section G (Left), Facing Southeast
The SDIA Airport Development Plan Project
East of the 1967 projecting bay on Section A is Section G, which was constructed in 1971 to house baggage facilities. Section G is constructed of concrete block and features two wide openings: one on the west side (see Plate 3.3.1–23) and one on the east side (Plate 3.3.1–24).

Immediately east of Section G is the Section A east concourse wing, which projects outward from the north façade of the main terminal and houses Gates 3 through 10. Section H, a second story, was added to the wing in 1982. The west façade first story of the Section A east concourse wing is a mix of concrete block, smooth stucco, simple metal doors, and fixed-pane windows (Plates 3.3.1–25 and 3.3.1–26). There is an opening before the rotunda for a sloped driveway that runs underneath to the east façade of the wing (Plate 3.3.1–27). A concrete band at the top of the first story extends into a coffered overhang only on the rotunda portion of the wing (see Plate 3.3.1–26). Section H features a mix of concrete block, smooth stucco, fixed-pane windows, and a coffered concrete overhang, except in areas around the eight gates, which were built out to accommodate the jet bridges (see Plate 3.3.1–26).

The east façade of the Section A east concourse wing, before the wing terminates at the rotunda, is comprised of additions constructed in 1971 (Section J) and circa 2006 to 2007 (Section I). Section J is located between Section A and the north façade of Section A and is comprised of two stories used for office space. Section J exhibits concrete block, rectangular, fixed-pane windows, and a flat concrete roof (Plate 3.3.1–28). Section I is a large, rectangular, open-air baggage canopy (Plate 3.3.1–29) with a concrete roof, unadorned square pillared supports, and smooth concrete sides (Plate 3.3.1–30) that extends along the east façade of the Section A east concourse wing, terminating at the rotunda (Plate 3.3.1–31).

Immediately east of Section J is an original portion of the 1967 Section A terminal building. This section is rectangular and features a concrete roof overhang and no windows (Plate 3.3.1–32). The easternmost corner of this section is Section K, a rectangular addition that was constructed in 2005 with a modern metal overhang and fixed-pane windows (Plate 3.3.1–33). Gates 1 and 2 are located at either end of Section K (Plate 3.3.1–34).

Circa 2008 to 2009, Gate 1A (Section L), a rectangular, concrete block addition, was constructed east of Section A (Plate 3.3.1–35). Section L is connected to the east façade of Section A by a narrow passageway made of concrete block (see Plate 3.3.1–35) and features fixed-pane windows on its north façade (Plate 3.3.1–36); no windows are present on any other façade.
Plate 3.3.1-24
View of the Section J Baggage Facilities on the North Façade of Section A, Facing Southeast
The SDIA Airport Development Plan Project
Plate 3.3.1-25

View of the West Façade of the Section A East Concourse Wing, Facing East

The SDIA Airport Development Plan Project
Plate 3.3.1-26

View of the West Façade of the Rotunda Portion of the East Concourse Wing (Sections A and H), Facing Southeast

The SDIA Airport Development Plan Project
Plate 3.3.1–27

View of the Sloped Driveway that Runs Under
the Section A East Concourse Wing, Facing East

The SDIA Airport Development Plan Project
Plate 3.3.1–28
View of the Section J Office Between the North Façade of Section A (Left) and Section I (Right), Facing South
The SDIA Airport Development Plan Project
Plate 3.3.1–29
View of the East Façade of Section I, Facing South
The SDIA Airport Development Plan Project
Plate 3.3.1–30

View of the North Façade of Section I, Facing East

The SDIA Airport Development Plan Project
Plate 3.3.1–31
View of Section I on the East Façade of the
Section A East Concourse Wing, Facing West
The SDIA Airport Development Plan Project
Plate 3.3.1–32
View of the North Façade of the Original 1967 Portion of Section A Between the Section J Office (Right) and Section K (Left), Facing South
The SDIA Airport Development Plan Project
Plate 3.3.1–33
View of Section K at the Northeast Corner of Section A (Right), Facing South
The SDIA Airport Development Plan Project
Plate 3.3.1–34

View of Gates 1 and 2 on the North Façade of Section K, Facing South

The SDIA Airport Development Plan Project
Plate 3.3.1–35

View of the South Façade of Section L, Facing Northeast

The SDIA Airport Development Plan Project

(Image courtesy of Google Street View)
Plate 3.3.1–36
View of the North Façade of Section L, Facing South
The SDIA Airport Development Plan Project
City of San Diego Modernism Context Statement

In October of 2007, the City of San Diego developed and implemented the San Diego Modernism Historic Context Statement (Modernism Context Statement) (City of San Diego 2007). The stated purpose of the Modernism Context Statement is to “assist in the identification, evaluation and preservation of significant historic buildings, districts, sites, and structures associated with the Modernism movement in San Diego from 1935 to 1970.” It was created to better understand “Modern era resources and the types of resources that are significant to the history and development of San Diego.” Although the City of San Diego is not the lead agency for this project, the Modernism Context Statement is an appropriate analytical basis for the evaluation of Terminal 1.

Under the Modernism Context Statement, Terminal 1 exhibits two different architectural styles. The primary (south) façade of Section A exhibits traits of the Brutalist architectural style with Futurist influences and the east, north, and west façades (Sections A through L) exhibit traits of the International architectural style. Because over 90 percent of the east, north, and west façades has been modified, only the south façade’s original architecture has been evaluated.

According to the Modernism Context Statement, Brutalism originated from the French term béton brut, meaning “raw concrete.” Worldwide, buildings designed in the Brutalist architectural style began to be built as early as the 1950s; however, the style did not reach San Diego until approximately 1965. Largely inspired by Swiss architect Le Corbusier, buildings designed in the Brutalist style are strikingly blockish, geometric, and contain design elements with repetitive shapes. The primary material used in the construction of Brutalist-style buildings is concrete, which not only serves as the primary structural material, but also as the finish. Those critical of the style state that Brutalism buildings disregard the social environment, thereby causing the structure to seem inhuman, stark, and out of place. Most Brutalism buildings located in San Diego are located on the University of California at San Diego campus, although Qualcomm Stadium and the Salk Institute are also examples of Brutalism.

Primary Character-Defining Features

According to the Modernism Context Statement, there are four Primary character-defining features of Brutalism, which have been specifically applied to the primary (south) façade of Section A, accordingly:

1. **Exposed and expressive structural system**

 The primary (south) façade of Section A does exhibit an exposed and expressive structural system. The wide overhang is supported by 18 evenly spaced, poured-concrete columns that taper toward the top where they reach their narrowest point and stylistically reveal structural steel. This same structural exposure can be seen in the columns in Terminal 2 East, which were described by the San Diego Union (1979b) as
“elegant poseurs” designed for “a purely aesthetic effect.” The curved tapering of the columns, which resemble “Jetsons”-esque supports (Plate 3.3.1–37), also introduce “abstract … curved shapes,” (City of San Diego 2007), a Primary character-defining feature of the Futurist architectural style. Therefore, the primary (south) façade of Section A does possess this Primary character-defining feature of Brutalism.

Plate 3.3.1–37: Example of “Jetsons”-esque-style pillars. *(Illustration courtesy of Smithsonian Magazine)*

2. **Monumental massing**

Merriam-Webster (2017) defines the word “monumental” as “serving or resembling a monument: massive,” and Charleson (2015) defines the word “massing” as the “architectural form” or “enveloping form” of a structure. Although Terminal 1 is only two stories tall, it was specifically designed to accommodate large jet engine aircraft with an expansive, 1,000-by-450-foot horizontal footprint, which can easily be defined as “monumental.” While the Modernism Context Statement classifies building such as William Pereira’s University of California at San Diego Geisel Library and Gary Allen’s Qualcomm Stadium as possessing monumental massing due to their height, neither building possesses a footprint as large as that of Terminal 1. Therefore, the primary (south) façade of Section A does possess this Primary character-defining feature of Brutalism.
3. **Angular and rectilinear forms**

The primary (south) façade of Section A exhibits both angular and rectilinear forms. Angular forms can be seen in the trapezoidal floor-to-ceiling window bays, which project outward between the tapered support columns and rectilinear forms can be seen in the different-sized, rectangular, floor-to-ceiling window panes and the squares that form the ceiling of the cantilevered roof overhang. The cantilevered concrete slab roof sits at a 90-degree angle, which creates another rectilinear form. The use of angular shapes is also a Primary character-defining feature of the Futurist architectural style, which blends seamlessly with the Brutalist style of Terminal 1. Therefore, the primary (south) façade of Section A does possess this Primary character-defining feature of Brutalism.

4. **Exposed concrete as building finish**

While the primary (south) façade of Section A does possess exposed concrete surfaces in the roof overhang and the support columns, the exterior walls are comprised of either floor-to-ceiling windows or concrete block. The exposed concrete is utilized as more of an accent than as a building finish, and in this instance, the finish of the building is more representative of the Futurist architectural style, which utilizes concrete block and large aluminum-framed windows. Therefore, the primary (south) façade of Section A does not possess this Primary character-defining feature of Brutalism.

Of the four Primary character-defining features of Brutalism expressed in the Modernism Context Statement, the primary (south) façade of Section A possesses three.

Secondary Character-Defining Features

According to the Modernism Context Statement, there are two Secondary character-defining features of Brutalism, which have been specifically applied to the primary (south) façade of Section A, accordingly:

1. **Repetitive patterns**

The primary (south) façade of Section A does exhibit repetitive patterns, as seen in the evenly spaced, repetitive, coffered pattern under the cantilevered roof. The poured concrete support columns are also evenly spaced and create a repetitive pattern. Therefore, the primary (south) façade of Section A does possess this Secondary character-defining feature of Brutalism.
2. **Intentional avoidance of traditional elements or ornament**

Terminal 1 was not designed with any traditional elements or ornamentation other than the stylized, poured concrete columns and the cantilevered roof overhang along the primary (south) façade of Section A. Therefore, the primary (south) façade of Section A does possess this Secondary character-defining feature of Brutalism.

Of the two Secondary character-defining features of Brutalism expressed in the Modernism Context Statement, the primary (south) façade of Section A possesses two.

Integrity Evaluation

When evaluating a historic resource, integrity is the authenticity of the resource’s physical identity clearly indicated by the retention of characteristics that existed during its period of significance. It is important to note that integrity is not the same as condition. Integrity directly relates to the presence or absence of historic materials and character-defining features, while condition relates to the relative state of physical deterioration of the resource. In most instances, integrity is more relevant to the significance of a resource than condition; however, if a resource is in such poor condition that original materials and features may no longer be salvageable, then the resource’s integrity may be adversely impacted.

In order to assess each aspect of integrity when evaluating Terminal 1, the following analysis was completed, as recommended by Milbrooke et al. (1998):

1. **Location** is the place where a resource was constructed or where an event occurred.

 Integrity of location was assessed by reviewing historic records and aerial photographs in order to determine if the building had always existed at its present location or if it had been moved or rebuilt. A review of historic aerial photographs revealed that Terminal 1 has not been moved since its date of construction, and therefore, retains integrity of location.

2. **Design** results from intentional decisions made during the conception and planning of a resource. Design includes form, plan, space, structure, and style of a property.

 Integrity of design was assessed by evaluating the spatial arrangement of the building and any unique architectural features present. Only the primary (south) façade of Section A retains integrity of form, plan, space, structure, and style. This façade still exhibits the same Brutalist architectural style with Futurist influences that it did when Terminal 1 was first constructed in 1967. The north, east, and west façades of the building (Sections A through L), which originally exhibited elements of the
International architectural style, have been heavily modified and no longer reflect their original design.

The primary (south) façade of Section A possesses three of the four Primary and both Secondary character-defining features of Brutalism, as well as the curved and angular shapes, large aluminum-framed windows, and concrete block exterior finish typical of the Futurist style. The installation of Section B (the sky bridge) in the center of the primary (south) façade of Section A and the replacement of original windows on the east portion of the façade have modified the original Brutalist design; however, both modifications conform to the Secretary of the Interior’s Standards for Rehabilitation. The size and massing of the additions are appropriate for the monumental scale of Terminal 1 and the use of modern metal panels and large pieces of glass differentiate the additions from the original building without mimicking or impacting the original design.

At an unknown date, vinyl soffit was installed on the underside of the cantilevered overhang on the primary (south) façade of Section A, alternating with sections of the curved, concave, square indentations, impacting the building’s integrity of design. Prior to its installation, the underside of the overhang was only sections of the deeply coffered, waffle-slab roof system that extended from the main structure past the roof overhang. The introduction of the vinyl soffit diminished the amount of concrete, a Primary character-defining feature of Brutalism, present on this façade. It also detracted from the repetitive pattern, a Secondary character-defining feature of Brutalism, which was created by the coffered ceiling. Although the introduction of the vinyl has negatively impacted portions of the cantilevered waffle-slab overhang, due to the massive size of the building and the fact that only portions of the character-defining features have been modified, the primary (south) façade of Section A still retains integrity of design.

The International-style east, north, and west façades of Terminal 1 are generally closed to the public. Since the building’s completion in 1967, several modifications have been made to these façades, including:

- **Sections G and J (1971):** Section J, a two-story addition, was constructed on the east façade of the Section A east concourse wing, between Section I and the north façade of the Section A terminal building. Section J was designed by Paderewski, Dean & Associates and built by Art A. Gussa, Inc. (*San Diego Union* 1970a). Section J provided more airline baggage handling space and office space for Western Airlines, United Airlines, and American Airlines.
Section G was constructed on the north façade of Section A, east of an original 1967 projecting bay, which was once the Interstate Hosts Restaurant, to house baggage facilities. Section G features two wide openings: one on the west side and one on the east side.

- **Sections D and H (1982):** Section H, a second story, was added to the Section A east concourse wing, which allowed passengers to board the wide-bodied aircraft through convenient jet bridges, provided a larger waiting/seating area, expanded the baggage area, created a second-story office space, and enclosed the west rotunda portion of the wing (San Diego Unified Port District 1991). Section D, a two-story baggage service and office space addition, was constructed on the westernmost section of the north façade of Section A, which features five open bays that lead to baggage facilities.

- **Section E (1990):** A 25,000-square-foot, second-story addition was added to the Section A west concourse wing that included eight passenger loading bridges, improvements for Gates 11 through 18, the location for the USAir Club, and a 4,100-square-foot lounge area for USAir passengers.

- **Section F (Circa 1994 to 1997):** A single-story addition was constructed on the north façade of Section A, immediately east of the Section A west concourse wing.

- **Section C (Circa 2000 to 2001):** A connector wing was built on the west façade of Section A that extends from Terminal 1 to Terminal 2 East and contains a covered walkway and two international gates.

- **Section K (2005):** A rectangular addition was constructed on the easternmost corner of Section A as the location of Gates 1 and 2.

- **Section I (Circa 2006 to 2007):** A large, rectangular, open-air baggage canopy was constructed along the east façade of the Section A east concourse wing, terminating at the rotunda.

- **Section L (Circa 2008 to 2009):** Gate 1A, a rectangular, concrete block addition, was constructed east of Section A. This addition is connected to the east façade by a narrow passageway made of concrete block.

These modifications have adversely impacted the original form, plan, space, style, and structure of the east, north, and west façades of Terminal 1. The various additions (Sections C through L) have also increased the overall square footage of the building and modified the exterior appearance. The construction of a second story on both the Section A west and east concourse wings (Sections E and H) has also altered the overall massing of the building. For this reason, the east, north, and west façades of Terminal 1 (and therefore, the building as a whole) do not retain integrity of design.
3. **Setting** applies to a physical environment, the character of a resource’s location, and a resource’s relationship to the surrounding area.

Integrity of setting was assessed by inspecting the elements of the property, which included topographic features, open space, views, landscapes, vegetation, man-made features, and relationships between buildings and other features. The setting of Terminal 1 has not significantly changed since its completion in 1967. At that time, the airport had already been heavily built out with parking lots and other industrial buildings, just as it remains today. While the setting has evolved over time with the construction of newer ancillary buildings, the overall setting has not changed from that of an airport. Therefore, Terminal 1 retains integrity of setting.

4. **Materials** comprise the physical elements combined or deposited in a particular pattern or configuration to form a property.

Integrity of materials was assessed by determining the presence or absence of original building materials, as well as the possible introduction of materials, which may have altered the architectural design of the building. The east, north, and west façades of Terminal 1 have been significantly altered since 1967, which impacted original building materials. Sections C through L are composed of different materials and represent different building technologies; however, attempts were made to mimic the materials of the original heavy concrete and glass on the west, north, and east façades. Therefore, the east, north, and west façades of Terminal 1 (and therefore the building as a whole) do not retain integrity of materials.

The installation of Section B (the sky bridge) in the center of the primary (south) façade of Section A and the replacement of original windows on the east portion of the façade added modern materials; however, both modifications conform to the Secretary of the Interior’s Standards for Rehabilitation, and the use of modern metal panels and large pieces of glass differentiate the additions from the original building without mimicking or impacting the original design. The introduction of these newer elements did not impact the original building materials. The only new material that did alter the original building is the vinyl soffit that was installed on the underside of the cantilevered overhang. This minimal change, however, has not altered the architectural design, and therefore, the primary (south) façade of Section A retains integrity of materials.

5. **Workmanship** consists of the physical evidence of crafts employed by a particular culture, people, or artisan, which includes traditional, vernacular, and high styles.
Integrity of workmanship was assessed by evaluating the quality of the architectural features present in the building. The extensive alterations made to Terminal 1 have impacted the integrity of workmanship. The additions visible on all four façades of the building were constructed at varying times and represent multiple builders. Therefore, the building as a whole does not retain integrity of workmanship.

The primary (south) façade of Section A possesses three of the four Primary and both Secondary character-defining features of Brutalism, as well as some minor Futurist characteristics. The installation of the sky bridge (Section B) in the center of the primary (south) façade of Section A and the replacement of original windows on the east portion of the façade have modified the original Brutalist design; however, both modifications conform to the Secretary of the Interior’s Standards for Rehabilitation. The size and massing of the additions are appropriate for the monumental scale of Terminal 1 and the use of modern metal panels and large pieces of glass differentiate the additions from the original building without mimicking or impacting the original design. Therefore, the primary (south) façade of Section A retains integrity of workmanship.

6. **Feeling** relies upon present physical features of a property to convey and evoke an aesthetic or historic sense of past time and place.

Integrity of feeling was assessed by evaluating whether or not the resource’s features, in combination with its setting, conveyed an aesthetic sense of the property in 1967 when Terminal 1 was constructed. The original physical features of Terminal 1 are still present and the building maintains its original function as an airport. The primary (south) façade of Section A remains the same as it was in 1967 and still evokes a sense of 1960s Futurism through the presence of the original Brutalist and Futurist architectural elements. The only alterations to Terminal 1 were done in order to modernize the building and maintain its continued use as an airport. These alterations did not affect the overall feeling of the building, and therefore, the primary (south) façade of Section A retains integrity of feeling.

7. **Association** directly links a property with a historic event, activity, or person of past time and place, and requires the presence of physical features to convey the property’s character.

Historical research did not reveal any important events or individuals that are closely associated with Terminal 1, and therefore, the building never possessed integrity of association.
NRHP/CRHR Evaluation

In order for a historic resource to be considered eligible for listing on the NRHP or the CRHR, it must be determined significant at the local, state, or national level under one or more of the following criteria:

- **NRHP/CRHR Criterion A/1:**
 It is associated with events that have made a significant contribution to the broad patterns of history.

 It was discovered through historical research that no single, significant event is associated with the SDIA. However, Terminal 1 was built in 1967 to accommodate the rising number of airline passengers traveling through San Diego. Before that time, the airport’s main terminal was located on the other side of Lindbergh Field, along Pacific Highway. With the addition of Terminal 1, Lindbergh Field was able to advance into the jet age of aviation due to the ability to dock and maintain large jet engine aircraft. Because the construction of Terminal 1 is reflective of the modernization of San Diego and its ability to accommodate the ever-increasing needs of the commercial air traffic boom of the 1960s and 1970s, Terminal 1 is significant under Criterion A/1.

- **NRHP/CRHR Criterion B/2:**
 It is associated with the lives of persons important in our past.

 No significant persons could be closely associated with Terminal 1. Then-California Governor Ronald Reagan was the first passenger to arrive at Terminal 1 before delivering the dedication speech. However, this event is not considered to be a significant contribution to the broad pattern of San Diego’s history. Reagan’s term as California Governor included attending events like this on a regular basis and his presence at Terminal 1 is not significant moment for the airport or for his career. Therefore, Terminal 1 is not significant under Criterion B/2.

- **NRHP/CRHR Criterion C/3:**
 It embodies the distinctive characteristics of a type, period, region, or method of construction; represents the work of an important creative individual; or possesses high artistic values.

 Terminal 1 was designed by Paderewski, Dean & Associates (*San Diego Union* 1967b), who was responsible for a number of construction designs in San Diego, including: the first school to utilize radiant heat in 1947; the first prefabricated plywood wall and roof panel system used in several schools; an all-glass elevator at the El Cortez Hotel (1956);
and the Buckminster Fuller-inspired geodesic dome on the Physical Education Building at Palomar College (Modern San Diego n.d.). However, only Clarence Joseph Paderewski, president of the firm, is listed as a “Contributing Designer of Modern San Diego” in the Modernism Context Statement (City of San Diego 2007). Louis Dean, the principal architect for Terminal 1, is only referenced in the Modernism Context Statement for his involvement with Paderewski. Furthermore, neither Paderewski nor Dean are listed as established master architects by the City of San Diego Historical Resources Board (City of San Diego 2011). Therefore, Terminal 1 is not significant under NRHP/CRHR C/3 due its association with Paderewski, Dean & Associates.

The International-style east, north, and west façades are not accessible to the public and can rarely be seen. Regardless, these façades have been heavily altered through the addition of Sections C through L and no longer retain enough original integrity to be representative of the International style. For this reason, the east, north, and west façades of Terminal 1 (and therefore, the building as a whole) are not significant under Criterion C/3.

The primary (south) façade of Section A is currently the location for all passenger loading for departing and arriving flights for Frontier Airlines, Southwest Airlines, and Alaska Airlines. This façade has been minimally altered and still reflects the distinctive characteristics of Brutalism and Futurism that it originally exhibited in 1967. According to the Modernism Context Statement, Brutalist-style buildings are rare in San Diego, but modifications that have significantly altered or obscured any character-defining features may render a building ineligible for designation. Modifications made to the primary (south) façade of Section A, however, have not significantly altered or obscured the character-defining features of Brutalism that it currently exhibits.

The only major alterations made to the primary (south) façade of Section A include the sky bridge and the vinyl ceiling soffit along the coffered concrete overhang. Section B (the sky bridge) connects Section A via a two-story structure (see Section B) and allows passengers easy access to the parking lot across the street; however, Section B does not mask the Brutalist or Futurist elements of the primary (south) façade of Section A. Similarly, the introduction of vinyl soffit in the coffered concrete overhang detracts from, but does not completely change, the nature of this façade of Section A. Therefore, the primary (south) façade of Section A is significant under Criterion C/3.

- NRHP/CRHR Criterion D/4:
 It has yielded, or may be likely to yield, information important in prehistory or history.
Terminal 1 does not have the potential to yield any additional information important to local, state, or national history, and therefore, is not significant under Criterion D/4.

Conclusion

Terminal 1 was constructed in 1967 as a Brutalist-style airport terminal with Futurist influences on the primary (south) façade and International influences on the north, west, and east façades. The overall building currently retains only three out of seven aspects of original integrity, while the primary (south) façade of Section A retains four. Although the modifications made to the north, east, and west façades (Sections C through L) have negatively impacted the building as a whole, the original primary (south) façade of Section A has remained intact. Currently, the primary (south) façade of Section A possesses three out of four Primary and both Secondary character-defining features of Brutalism, which makes this façade a good example of the style. The primary (south) façade of Section A in and of itself is significant under Criterion C/3; however, the loss of architectural integrity on the other three façades has rendered the overall building not significant. Terminal 1 is still reflective of the modernization of Lindbergh Field during the commercial air traffic boom of the 1960s and 1970s and continues to be used as a large volume airport. Therefore, Terminal 1 is significant under Criterion A/1 and it is recommended that the building be documented prior to demolition or alteration.
3.3.2 Site P-37-036757 – Terminal 2 East (Potential Period of Significance 1979)

Resource Description

The amount of air traffic in San Diego doubled between 1956 and 1963, and then doubled again between 1963 and 1966. In the 1967 fiscal year (when Terminal 1 was completed), Lindbergh Field saw a record number of 2,177,110 travelers (San Diego Unified Port District 1966-1967). The increase in air travel was amplified by the use of new aircraft, such as the stretched versions of the DC-8 and the Boeing 747.

In 1968, voters within the San Diego Unified Port District communities approved a $25.4 million bond for improvements in the San Diego Harbor area. According to the San Diego Unified Port District’s 1967-1968 annual report, “even a conservative treatment of air travel statistics indicates a compelling requirement for expansion to meet the wave of new air travelers which will engulf airports in the next decade.” The funds were meant to “relieve present congestion, prepare the airport for the next generation of jumbo aircraft and anticipated direct San Diego-to-Hawaii flights” (San Diego Union 1968a).

In 1969, the Board of Port Commissioners selected Frank L. Hope & Associates to conduct expansion studies for the structures located within Lindbergh Field (Plate 3.3.2–1) (San Diego Union 1971). However, due to size and cost issues, these plans were never used (San Diego Union 1971) and it would take more than five years for any work to begin on the construction of a new terminal.

Plate 3.3.2–1: Frank L. Hope & Associates expansion plans for Lindbergh Field.
(Drawing courtesy of San Diego Union 1971)
Before construction on a new terminal could begin, a number of improvements to Lindbergh Field needed to be made, including:

- **Late December of 1967:** A new control tower was built to the new FAA standards.
- **July of 1968:** A new, three-story administrative office building and airplane hangar were completed for PSA.
- **January 1, 1970:** A fire and rescue station was built adjacent to the control tower.
- **1972:** An extension to the main service runway brought it to its present-day length of 9,400 feet (San Diego Unified Port District 1991).
- **1973:** Federally-mandated security measures, such as baggage search checkpoints and screening operations, were implemented to reduce the potential for aircraft hijacking.
- **1974:** A revolutionary new system for monitoring noise pollution was completed; this was one of the first elaborate monitoring systems to be installed in any major California airport.
- **1975:** A 26-acre parking apron was built at the site of the future Terminal 2 East to service new, larger commercial aircraft.
- **January of 1976:** Various taxiways and runways were strengthened to accommodate the larger aircraft (San Diego Unified Port District 1991).

A number of additional factors contributed to the delay in construction of Terminal 2 East, including: debate on whether additions to existing facilities would be adequate (San Diego Union 1974a); the airport location, which presented flying dangers and possible deadly incidents if air traffic increased; and concerns raised by homeowners in the airport’s flight path (San Diego Union 1974a). However, despite these differing opinions, in 1974, the Board of Port Commissioners decided to continue the airport expansion due to a “responsibility of providing adequate facilities for the traveling public regardless of what other governmental agencies might be doing in relation to finding another airport site” (San Diego Union 1974b).

Paderewski, Dean & Associates, who designed Terminal 1, was also selected to design Terminal 2 East, along with builder M.H. Golden Construction Co. (San Diego Union 1977a). Construction began in 1977, 100 yards west of Terminal 1 (Plate 3.3.2–2). Terminal 2 East opened to the public on July 11, 1979, over six months after its projected completion date (San Diego Union 1979a), with 10 gates that were exclusively operated by American Airlines, Western Airlines, and Delta Airlines (San Diego Union 1979a). When originally constructed, Terminal 2 East was referred to as the “West Terminal” and Terminal 1 was referred to
as the “East Terminal.” Terminal 2 East featured the first jet bridges ever used in San Diego, protecting passengers from weather, wind, and noise when boarding and disembarking planes (San Diego Unified Port District 1991). A new baggage handling system for Terminal 2 East was installed in a separate building across Harbor Drive and a covered pedestrian bridge allowed passengers to walk from the second-story boarding concourse to the baggage claim building without having to cross street traffic (San Diego Unified Port District 1991). Terminal 2 East also included over 2,000 new parking spaces (Plate 3.3.2–3) (San Diego Union 1979a), new roadways, and an electronic collection system at the parking exits (San Diego Unified Port District 1991). In 1972, an extension to the main service runway brought it to its present-day length of 9,400 feet (San Diego Unified Port District 1991).

By the end of 1983, Lindbergh Field was servicing 13 major carriers and three commuter carriers, causing passenger traffic to increase exponentially, exceeding 5.1 million passengers traveling on 148,691 flights in 1980. By the end of 1989, approximately 11.1 million passengers traveling on 207,388 flights were passing through Lindbergh Field annually (San Diego Business Journal 2015).

By 1991, Terminal 2 East could no longer handle its ever-rising number of passengers, and in 1995, a 300,000-square-foot expansion and upgrade of Terminal 2, called “Terminal 2 West,” broke ground (San Diego Business Journal 2015; SDIA 2017). The Terminal 2 West expansion, thereby assigning Terminal 2 East its new directional designation, was opened for passenger traffic on January 8, 1998 (SDIA 2017).

A site plan has been provided in Figure 3.3.2–1 that color-codes all original and modified portions of Terminal 2 East. In addition, due to the extensive modifications, all portions of the building have also been assigned a letter designation (i.e., A, B, C, etc.), which will be used in all further discussion and evaluation.
Figure 3.3.2–1
Site Plan for Terminal 2 East
Site P-37-036757
The SDIA Airport Development Plan Project
Terminal 2 East possesses a roughly 160,240-square-foot, irregular-shaped footprint and a flat roof. The building is comprised of the original Section A, which consists of the rectangular terminal and one concourse wing, which projects off the north façade and in turn features two irregular-shaped additions. Like Terminal 1, Terminal 2 East was constructed with “gracefully strong-looking pillars,” a “deeply coffered concrete roof structure,” and a “warming element of colored glass” (San Diego Union 1979b). The primary (south) façade of Section A exhibits a wide, cantilevered, concrete overhang supported by 10 evenly spaced, poured-concrete columns. The columns taper toward the top quarter where they reach their narrowest point and reveal structural steel (Plate 3.3.2–4). The original overhang ceiling (Plate 3.3.2–5) exhibited the same deeply coffered roof system of curved, concave, curved square indentations that it currently exhibits (Plate 3.3.2–6). The coffered indentations on the cantilevered roof overhang are evenly spaced, create a repetitive pattern, and extend from the main structure past the roof overhang (Plate 3.3.2–7). When constructed, the wide overhang was entirely comprised of concrete (see Plate 3.3.2–5); however, it currently features a mixture of vinyl and concrete (see Plate 3.3.2–6). The primary (south) façade of Section A is currently a mix of fixed-pane glass panels, concrete rectangular slabs, and automatic sliding glass doors (Plate 3.3.2–8).

Section B, a sky bridge, was built toward the west side of the primary (south) façade of Section A in 2012. Section B is made of modern metal and glass and connects to a covered-canopy loading zone across Harbor Drive (Plate 3.3.2–9). The original baggage claim building, which used to be located across Harbor Drive, was accessible through a now-demolished sky bridge that was attached to the middle of the primary (south) façade of Section A. The original baggage claim building and original sky bridge were demolished in 2010.
Plate 3.3.2–4
One of 10 Concrete Support Columns on the Primary (South) Façade of Section A, Facing Northeast
The SDIA Airport Development Plan Project
Plate 3.3.2–6
Current View of the Mixed Concrete Waffle-Slab
and Vinyl Roof System Under the Primary (South)
Façade Roof Overhang of Section A, Facing West
The SDIA Airport Development Plan Project
Plate 3.3.2–7
View of the Primary (South) Façade of Section A, Facing West
The SDIA Airport Development Plan Project
Plate 3.3.2–8
View of the Primary (South) Façade of Section A, Facing Northeast
The SDIA Airport Development Plan Project
Plate 3.3.2-9

View of Section B Extending Off the Primary (South) Façade of Section A, Leading to the Covered Loading Zone Across Airport Terminal Road, Facing West

The SDIA Airport Development Plan Project

(Image courtesy of Google Street View)
The southwest corner of the west façade of Section A features the same wide, coffered, concrete overhang and poured-concrete columns as the primary (south) façade (Plate 3.3.2–10). The remainder of the west façade of Section A consists of Section C, which includes two separate modifications that were constructed in 1997 to connect Terminal 2 East to Terminal 2 West. The southern portion of Section C is flush with the south façade of Section A and is comprised of metal-framed, floor-to-ceiling windows (Plate 3.3.2–11). The northern portion of Section C consists of a second-story pedestrian walkway, which is made of modern metal and fixed-pane windows (Plate 3.3.2–12). Located between in the middle of Section C is a small, original, projecting bay that currently houses a Transportation Security Administration (TSA) PreCheck area. The remainder of the west façade of Section A consists of Section D, a two-story addition comprised of modern metal and fixed-pane windows that was constructed in 2005 (Plate 3.3.2–13). Currently, the first story of Section D is open and serves as a baggage handling space and, according to San Diego County Assessor records, the second story houses a “club area.”

The north façade of Section A has been heavily altered. Section D comprises the westernmost section of the north façade of Section A (Plate 3.3.2–14). East of Section D is an original two-story section of the Section A concourse wing, with a concrete band separating the first and second stories (Plate 3.3.2–15). The first floor is primarily comprised of concrete brick, simple metal doors, and fixed-pane windows; the second story is comprised of smooth stucco, fixed-pane windows, and a coffered concrete overhang (see Plate 3.3.2–15). Just north is Section E, a trapezoidal-shaped addition that was constructed between 1991 and 1994 and is divided horizontally and vertically by concrete bands. The first floor is comprised of concrete block, fixed-pane windows, and simple metal entrance doors; the second story is comprised of smooth stucco and fixed-pane windows with a coffered concrete overhang (Plates 3.3.2–16 and 3.3.2–17).

Immediately north of Section E is a small, two-story, original portion of the Section A concourse wing. Immediately north is Section F, an irregularly-shaped, two-story addition that was constructed between 1994 and 1997. The first story of Section F is concrete block and the second story is comprised of modern metal with a coffered concrete overhang (Plate 3.3.2–18). In 2013, Section F was enlarged, expanding to the north and west. The first story of the 2013 Section G is stucco and the second story is the same modern metal as the second story of Section F (Plate 3.3.2–19). Fixed-pane windows are located on the northern end of the second story of Section G at Gate 27 (Plate 3.3.2–20).
Plate 3.3.2–10

View of the Cofferéd Concrete Overhang and a Concrete Support Column on the West Façade of Section A, Facing Northeast

The SDIA Airport Development Plan Project
Plate 3.3.2–11
View of Section C (Center) Connecting the West Façade of Section A (Right) With the East Façade of Terminal 2 West (Left), Facing North
The SDIA Airport Development Plan Project
(Image courtesy of Google Street View)
Plate 3.3.2–12

View of the North Façade of Section C Connecting the West Façade of Section A (Left) With the East Façade of Terminal 2 West (Right), Facing South

The SDIA Airport Development Plan Project
Plate 3.3.2–13

View of the West Façade of Section D (Left), Facing East

The SDIA Airport Development Plan Project
Plate 3.3.2–14
View of the North Façade of Section D, Facing Southeast
The SDIA Airport Development Plan Project
Plate 3.3.2–15

View of the West Façade of the Section A Concourse Wing at the Connection With the Main Terminal Building, Facing East

The SDIA Airport Development Plan Project
Plate 3.3.2–16
View of the Southern Portion of Section E, Facing Northeast
The SDIA Airport Development Plan Project
Plate 3.3.2-17

View of the Northern Portion of Section E, Facing East

The SDIA Airport Development Plan Project
Plate 3.3.2–18
View of Section F (Center) Between Section A (Right) and Section G (Left), Facing Northeast
The SDIA Airport Development Plan Project
Plate 3.3.2–19
View of the West Façade of Section G, Facing East
The SDIA Airport Development Plan Project
Plate 3.3.2–20

View of the Fixed-Pane Windows on the West Façade of Section G, Facing Northeast

The SDIA Airport Development Plan Project
The north façade of Section G connects to an original, two-story, westward projection of the Section A concourse wing. This portion of Section A is horizontally and vertically divided by concrete bands. The first story is comprised of concrete block, simple metal doors, and fixed-pane windows; the second story is comprised of concrete block, stucco, and fixed-pane windows with a coffered concrete overhang (Plate 3.3.2–21). Immediately north is Section H, a two-story addition constructed in 1987 for use as a passenger waiting area (San Diego Unified Port District 1991). The first story is open and features concrete support columns; the second story is comprised of floor-to-ceiling, fixed-pane windows divided by concrete support columns, and a coffered concrete overhang (Plates 3.3.2–22 and 3.3.2–23). Immediately east of Section H is an original, two-story, eastward projection of the Section A concourse wing, which is horizontally and vertically divided by concrete bands. The first story is comprised of concrete block, fixed-pane windows, simple metal doors, and a metal roll-top door; the second story is comprised of stucco, and fixed-pane windows with a coffered concrete overhang (Plate 3.3.2–24).

Immediately south of the original eastward projection of the Section A concourse wing is Section I, a two-story addition that was constructed in 2013 and runs alongside roughly half of the Section A concourse (Plate 3.3.2–25). The first story is open and supported by stucco-clad concrete columns; the second story is comprised of modern metal and fixed-pane windows. With the exception of Section J, an addition built in 2000 in the northeast corner of the Section A terminal building, at its connection with the concourse wing, the remainder of the east façade of the Section A concourse wing is original (Plate 3.3.2–26). The original section is two stories and is horizontally and vertically divided by concrete bands. The first floor is comprised of concrete block, simple metal doors, and fixed-pane windows; the second story is comprised of smooth stucco, fixed-pane windows, and a coffered concrete overhang. A two-story trapezoidal projection near the center of Section A is constructed of concrete block (Plate 3.3.2–27).

The north façade of Section A, to the east of the concourse wing, has been covered by Section J. Section J is comprised of a two-story trapezoidal addition and connector wing, all constructed between 2000 and 2001. The first story of the trapezoidal portion of Section J is open and supported by concrete columns; the second story is comprised of modern metal and fixed-pane windows and houses Gate 22 (Plate 3.3.2–28). The modern metal and fixed-pane windows extend past the trapezoidal portion and across the entire north façade of the second story (Plate 3.3.2–29), and wrap around to cover the east façade (Plate 3.3.2–30), which houses international gates and connects to Terminal 1 (Plate 3.3.2–31). The second story is slightly cantilevered and supported by concrete columns. The exterior finish of the lower level is concrete block. The connector wing, which extends to the east, contains two international gates and features a modern metal overhang and fixed-pane windows (see Plate 3.3.1–15).
Plate 3.3.2–21

View of the Original 1979 Westward Projection of the Section A Concourse Wing, Facing Northwest

The SDIA Airport Development Plan Project
Plate 3.3.2–22

View of the West Side of Section H, Facing South

The SDIA Airport Development Plan Project
Plate 3.3.2-23
View of the East Side of Section H, Facing South
The SDIA Airport Development Plan Project
Plate 3.3.2–24
View of the Original 1979 Eastward Projection of the Section A Concourse Wing, Facing South
The SDIA Airport Development Plan Project
Plate 3.3.2–25

View of the East Façade of Section I, Facing West

The SDIA Airport Development Plan Project
Plate 3.3.2–26

View of the East Façade of the Section A Concourse Wing Between Section I (Right) and Section J (Left), Facing West

The SDIA Airport Development Plan Project
Plate 3.3.2–27
View of the East Façade of the Original 1979 Portion of the Section A Concourse Wing, Facing Southwest
The SDIA Airport Development Plan Project
Plate 3.3.2–28

View of the North Façade of Section J, Facing South

The SDIA Airport Development Plan Project
Plate 3.3.2–29

View of the North and East Façades of Section J, Facing Southwest

The SDIA Airport Development Plan Project
Plate 3.3.2–30
View of the East Façade of Section J, Facing West
The SDIA Airport Development Plan Project
Plate 3.3.2–31

View of the North Façade the Connector Wing Portion of Section J (Left), Facing West

The SDIA Airport Development Plan Project
In October of 2007, the City of San Diego developed and implemented the Modernism Context Statement (City of San Diego 2007). The stated purpose of the Modernism Context Statement is to “assist in the identification, evaluation and preservation of significant historic buildings, districts, sites, and structures associated with the Modernism movement in San Diego from 1935 to 1970” and was created to better understand “Modern era resources and the types of resources that are significant to the history and development of San Diego.” Although the City of San Diego is not the lead agency for this project, the Modernism Context Statement is an appropriate analytical basis for the evaluation of Terminal 2 East.

Under the Modernism Context Statement, Terminal 2 East exhibits two different architectural styles. The primary (south) façade (Section A) exhibits traits of the Brutalist architectural style with Futurist influences and the east, north, and west façades (Sections A through K) exhibit traits of the International architectural style. Because over 70 percent of the east, north, and west façades has been modified, only the original architecture on the primary (south) façade of Section A has been evaluated.

According to the Modernism Context Statement, Brutalism originated from the French term *béton brut*, meaning “raw concrete.” Worldwide, buildings designed in the Brutalist architectural style began to be built as early as the 1950s; however, the style did not reach San Diego until approximately 1965. Largely inspired by Swiss architect Le Corbusier, buildings designed in the Brutalist style are strikingly blockish, geometric, and contain design elements with repetitive shapes. The primary material used in the construction of Brutalist-style buildings is concrete, which not only serves as the primary structural material, but also as the finish. Those critical of the style state that Brutalism buildings disregard the social environment, thereby causing the structure to seem inhuman, stark, and out of place. Most Brutalism buildings located in San Diego are located on the University of California at San Diego campus, although Qualcomm Stadium and the Salk Institute are also examples of Brutalism.

Primary Character-Defining Features

According to the Modernism Context Statement, there are four Primary character-defining features of Brutalism, which have been specifically applied to the primary (south) façade of Section A, accordingly:

1. **Exposed and expressive structural system**

 The primary (south) façade of Section A does exhibit an exposed and expressive structural system. The wide overhang is supported by 10 evenly spaced, poured-concrete columns that taper toward the top where they reach their narrowest point and stylistically reveal structural steel. The columns were described by the *San Diego Union* (1979b) as “elegant poseurs” designed for “a purely aesthetic effect.” The
curved tapering of the columns, which resemble “Jetsons”-esque supports (see Plate 3.3.1–37), also introduce “abstract … curved shapes,” (City of San Diego 2007), a Primary character-defining feature of the Futurist architectural style. Therefore, the primary (south) façade of Section A does possess this Primary character-defining feature of Brutalism.

2. **Monumental massing**

Merriam-Webster (2017) defines the word “monumental” as “serving or resembling a monument: massive,” and Charleson (2015) defines the word “massing” as the “architectural form” or “enveloping form” of a structure. Like Terminal 1, Terminal 2 East is only two stories tall, but was specifically designed to accommodate large jet engine aircraft. Although smaller than Terminal 1, Terminal 2 East still possesses an expansive, approximately 380-by-780-foot horizontal footprint, which can easily be defined as “monumental.” The Modernism Context Statement classifies buildings such as William Pereira’s University of California at San Diego Geisel Library and Gary Allen’s Qualcomm Stadium as possessing monumental massing due to their height. Terminal 2 East possesses a footprint that falls between that of the Geisel Library and Qualcomm Stadium, and therefore, does possess this Primary character-defining feature of Brutalism.

3. **Angular and rectilinear forms**

The primary (south) façade of Section A exhibits both angular and rectilinear forms. Angular forms can be seen in the trapezoidal floor-to-ceiling window bays, which project outward between the tapered support columns, and rectilinear forms can be seen in the different-sized, rectangular, floor-to-ceiling window panes and the squares that form the ceiling of the cantilevered roof overhang. The cantilevered concrete slab roof sits at a 90-degree angle, which creates another rectilinear form. The use of angular shapes is also a Primary character-defining feature of the Futurist architectural style, which blends seamlessly with the Brutalist style of the Terminal 2 East design. Therefore, the primary (south) façade of Section A does possess this Primary character-defining feature of Brutalism.

4. **Exposed concrete as building finish**

While the primary (south) façade of Section A does possess exposed concrete surfaces in the roof overhang and the support columns, the exterior walls are comprised of either floor-to-ceiling windows or concrete block. The exposed concrete is utilized as more
of an accent than as a building finish, and in this instance, the finish of the building is more representative of the Futurist architectural style, which utilizes concrete block and large aluminum-framed windows. Therefore, the primary (south) façade of Section A does not possess this Primary character-defining feature of Brutalism.

Of the four Primary character-defining features of Brutalism expressed in the Modernism Context Statement, the primary (south) façade of Section A possesses three.

Secondary Character-Defining Features

According to the Modernism Context Statement, there are four Secondary character-defining features of Brutalism, which have been specifically applied to the primary (south) façade of Section A, accordingly:

1. **Repetitive patterns**

 The primary (south) façade of Section A does exhibit repetitive patterns, as seen in the evenly spaced, repetitive, coffered pattern under the cantilevered roof. The poured concrete support columns are also evenly spaced and create a repetitive pattern. Therefore, the primary (south) façade of Section A does possess this Secondary character-defining feature of Brutalism.

2. **Intentional avoidance of traditional elements or ornament**

 Terminal 2 East was not designed with any traditional elements or ornamentation other than the stylized, poured concrete columns and the cantilevered roof overhang along the primary (south) façade of Section A. Therefore, the primary (south) façade of Section A does possess this Secondary character-defining feature of Brutalism.

Of the two Secondary character-defining features of Brutalism expressed in the Modernism Context Statement, the primary (south) façade of Section A possesses both.

Integrity Evaluation

When evaluating a historic resource, integrity is the authenticity of the resource’s physical identity clearly indicated by the retention of characteristics that existed during its period of significance. It is important to note that integrity is not the same as condition. Integrity directly relates to the presence or absence of historic materials and character-defining features, while condition relates to the relative state of physical deterioration of the resource. In most instances, integrity is more relevant to the significance of a resource than condition; however, if a resource is in such poor condition that original materials and features may no longer be salvageable, then
the resource’s integrity may be adversely impacted. In order to assess each aspect of integrity when evaluating Terminal 2 East, the following steps were taken, as recommended by Milbrooke et al. (1998):

1. **Location** is the place where a resource was constructed or where an event occurred.

 Integrity of location was assessed by reviewing historic records and aerial photographs in order to determine if the building had always existed at its present location or if it had been moved or rebuilt. A review of historic aerial photographs revealed that Terminal 2 East has not been moved since its date of construction, and therefore, retains integrity of location.

2. **Design** results from intentional decisions made during the conception and planning of a resource. Design includes form, plan, space, structure, and style of a property.

 Integrity of design was assessed by evaluating the spatial arrangement of the building and any unique architectural features present. Terminal 2 East was designed to emulate Terminal 1, and as such, the primary (south) façade of Section A originally exhibited characteristics of the Brutalist architectural style with Futurist influences, just like Terminal 1. While the primary (south) façade of Section A currently does possess three out of four Primary and both Secondary character-defining features of Brutalism, as well as curved and angular shapes, large aluminum-framed windows, and a concrete block exterior finish, which are typical of the Futurist style, modifications made since construction in 1979 have negatively impacted original design elements. The north, east, and west façades of the building, which include portions and/or all of Sections C through J, originally exhibited elements of the International architectural style but have been heavily modified and no longer reflect their original design.

 When completed in 1979, a sky bridge was located in the center of the primary (south) façade of Section A that led to a baggage claim building located on the other side of the passenger loading area. The original sky bridge and baggage claim building were demolished in 2010. A new sky bridge (Section B) leading to an elevated passenger loading area was constructed to the west of the original sky bridge location in 2012. However, the demolition of the original sky bridge and baggage claim building does not meet the Secretary of the Interior’s Standards for Rehabilitation due to the loss of original materials and character-defining features. Therefore, the removal of the original sky bridge and baggage claim building and the construction of Section B negatively impacted the original design of the primary (south) façade of Section A.
At an unknown date, vinyl soffit was installed on the underside of the cantilevered overhang on the primary (south) façade of Section A, alternating with sections of the curved, concave, square indentations, impacting the building’s integrity of design. Prior to the installation of the vinyl soffit, the underside of the overhang only exhibited the deeply coffered, waffle-slab roof system that extended from the main structure past the roof overhang. The introduction of the vinyl soffit diminished the amount of concrete (a Primary character-defining feature of Brutalism) present on the primary (south) façade of Section A and interrupted the repetitive pattern (a Secondary character-defining feature of Brutalism) created by the coffered ceiling. Although the introduction of the vinyl has negatively impacted portions of the cantilevered waffle-slab overhang, due to the massive size of the building, this modification did not impact the integrity of design of the primary (south) façade of Section A.

The installation of the vinyl soffit did not adversely impact the integrity of design of the primary (south) façade of Section A; however, the removal of the original sky bridge and baggage claim building did. Because the removal of these original elements is not compatible with the Secretary of the Interior’s Standards for Rehabilitation, the primary (south) façade of Section A does not retain integrity of design.

Since the building’s completion in 1979, several modifications have been made to the International-style east, north, and west façades of Terminal 2 East, including:

- **Section H (1987):** A two-story addition was constructed on the north façade of the westward projection of the Section A concourse wing as a passenger loading lounge.
- **Section E (Circa 1991 to 1994):** A trapezoidal addition was constructed on the west façade of the Section A concourse wing, north of Section D and an original 1979 portion of the Section A, between Gates 23 and 25.
- **Section F (Circa 1994 to 1997):** An irregularly-shaped, two-story addition was constructed on the west façade of the Section A concourse wing, north of Section E, between Gates 25 and 29.
- **Section C (1997):** Two additions were constructed around the same time as Terminal 2 West: one comprised of floor-to-ceiling windows between Terminal 2 East and Terminal 2 West to connect the two terminals and a second-story pedestrian walkway.
- **Section J (2000 and 2001):** A trapezoidal addition and connector wing were constructed on the north and east façades of the Section A terminal building, east of the concourse wing. This northern portion of the addition houses Gate 22. The connector wing portion was built on the east façade of Section A and
extends from Terminal 2 East to Terminal 1. This portion contains a covered walkway and two international gates.

- **Section D (2005):** A two-story addition was constructed on the north façade of the Section A terminal building, west of the concourse wing. Currently, the first story of the addition is open and serves as a baggage handling space and according to San Diego County Assessor records, the second story houses a “club area.”

- **Sections G and I (2013):** A two-story addition was constructed onto Section F on the west façade of the Section A concourse wing, which houses vendors and Gate 27. Immediately south of the original eastward projection of the Section A concourse wing, another two-story addition was constructed alongside roughly half of the concourse and currently houses vendors and Gate 26.

These modifications have adversely impacted the original form, plan, space, style, and structure of the east, north, and west façades (Sections C through J) of Terminal 2 East. The various additions have also increased the overall square footage of the building and modified the exterior appearance. For this reason, the east, north, and west façades of Terminal 2 East (and therefore, the building as a whole) do not retain integrity of design.

3. **Setting** applies to a physical environment, the character of a resource’s location, and a resource’s relationship to the surrounding area.

Integrity of setting was assessed by inspecting the elements of the property, which included topographic features, open space, views, landscapes, vegetation, man-made features, and relationships between buildings and other features. The setting of Terminal 2 East has not significantly changed since its completion in 1979. At that time, the airport had already been heavily built out with parking lots and other industrial buildings, just as it remains today. While the setting has evolved over time with the construction of newer ancillary buildings, the overall setting has not changed from that of an airport. Therefore, Terminal 2 East retains integrity of setting.

4. **Materials** comprise the physical elements combined or deposited in a particular pattern or configuration to form a property.

Integrity of materials was assessed by determining the presence or absence of original building materials, as well as the possible introduction of materials, which may have altered the architectural design of the building. All façades of Terminal 2 East have
been significantly altered since 1979, impacting the original building materials. The construction of all subsequent additions utilized different building materials and technologies. Only two attempts were made to mimic the original building materials: Section E on the west façade of the Section A concourse wing and Section H on the northwest corner of the Section A concourse wing. However, no attempt was made to match the materials used on a majority of the other additions. Sections B, C, D, G, F, I, and J were constructed using modern metals that highly contrast with the original 1979 building materials. While the Secretary of the Interior’s Standards for Rehabilitation recommend the use of materials that differentiate additions from an original building, Sections C through J have greatly obscured the original west, north, and east façades of Terminal 2 East, which does not conform. In addition, the removal of the original materials associated with the original sky bridge and baggage claim building negatively impacted integrity of materials on the primary (south) façade of Section A. Therefore, Terminal 2 East does not retain integrity of materials.

5. **Workmanship** consists of the physical evidence of crafts employed by a particular culture, people, or artisan, which includes traditional, vernacular, and high styles.

Integrity of workmanship was assessed by evaluating the quality of the architectural features present in the building. The extensive alterations made to Terminal 2 East have impacted the integrity of workmanship. Sections B through J on all four façades of the building were constructed at varying times and represent multiple builders. Therefore, Terminal 2 East does not retain integrity of workmanship.

6. **Feeling** relies upon present physical features of a property to convey and evoke an aesthetic or historic sense of past time and place.

Integrity of feeling was assessed by evaluating whether or not the resource’s features, in combination with its setting, conveyed an aesthetic sense of the property in 1979 when Terminal 2 East was constructed. Terminal 2 East was constructed to emulate the design of the 1967 Terminal 1 building. This created a false sense of a 1960s period of construction while using Brutalist-style elements and materials compatible with buildings constructed in the 1970s. While many original features are still present on the primary (south) façade of Section A, the original sky bridge and baggage claim building (that did not match Terminal 1) were removed in 2010. The removal of these original features and the installation of a new sky bridge in 2012 (Section B) altered the original façade of Section A. The modifications made to the east, north, and west façades (Sections C through J) between 1987 and 2013 also impacted the original design and materials of Terminal 2 East. Although the building generally retains
integrity of setting, Terminal 2 East no longer conveys an aesthetic sense of the property in 1979, and therefore, does not retain integrity of feeling.

7. **Association** directly links a property with a historic event, activity, or person of past time and place, and requires the presence of physical features to convey the property’s character.

Historical research did not reveal any important events or individuals that are closely associated with Terminal 2 East, and therefore, it never possessed integrity of association.

NRHP/CRHR Evaluation

In order for a historic resource to be considered eligible for listing on the NRHP or the CRHR, it must be determined significant at the local, state, or national level under one or more of the following criteria:

- **NRHP/CRHR Criterion A/1:**

 It is associated with events that have made a significant contribution to the broad patterns of history.

 It was determined through historical research that no single, significant event is associated with the SDIA. Terminal 2 East was built in 1979 to accommodate the rising number of airline passengers traveling through San Diego; however, construction of the building did not introduce or allow the use of any new technology or practices in the airline industry in local, regional, or national history. Therefore, Terminal 2 East is not significant under Criterion A/1.

- **NRHP/CRHR Criterion B/2:**

 It is associated with the lives of persons important in our past.

 No significant persons could be closely associated with Terminal 2 East, and therefore, it is not significant under Criterion B/2.

- **NRHP/CRHR Criterion C/3:**

 It embodies the distinctive characteristics of a type, period, region, or method of construction; represents the work of an important creative individual; or possesses high artistic values.
Terminal 2 East was designed by Paderewski, Dean & Associates (*San Diego Union* 1967b), who was responsible for a number of construction designs in San Diego, including: the first school to utilize radiant heat in 1947; the first prefabricated plywood wall and roof panel system used in several schools; an all-glass elevator at the El Cortez Hotel (1956); and the Buckminster Fuller-inspired geodesic dome on the Physical Education Building at Palomar College (*Modern San Diego* n.d.). However, only Clarence Joseph Paderewski, president of the firm, is listed as a “Contributing Designer of Modern San Diego” in the Modernism Context Statement (*City of San Diego* 2007). Louis Dean, the principal architect for Terminal 2 East, is only referenced in the Modernism Context Statement for his involvement with Paderewski. Furthermore, neither Paderewski nor Dean are listed as established master architects by the City of San Diego Historical Resources Board (*City of San Diego* 2007). Therefore, Terminal 2 East is not significant under Criterion C/3 due its association with Paderewski, Dean & Associates.

Terminal 2 East was constructed to emulate the 1967 design of Terminal 1. This created a false sense of a 1960s period of construction while using Brutalist-style elements and materials compatible with buildings constructed in the 1970s. While many of the original elements of Terminal 2 East are still present on the primary (south) façade of Section A, the removal of the original sky bridge and baggage claim building (that did not match Terminal 1) in 2010 impacted the building’s overall integrity. The removal of these original features and the installation of a new sky bridge (Section B) altered the false 1960s feeling of the original building. In addition, the east, north, and west façades were heavily altered by the construction of Sections C through J and no longer retain enough original integrity to be representative of the International architectural style. Therefore, Terminal 2 East is not significant under Criterion C/3.

- **NRHP/CRHR Criterion D/4:**
 It has yielded, or may be likely to yield, information important in prehistory or history.

 Terminal 2 East does not have potential to yield any additional information important to local, state, or national history, and therefore, is not significant under Criterion D/4.
Conclusion

Terminal 2 East was constructed in 1979 as a Brutalist-style airport terminal with Futurist influences on the primary (south) façade (Section A) and International influences on the north, west, and east façades (Sections A through J). The architectural design was intended to complement the appearance of Terminal 1. Terminal 2 East currently retains only two out of seven aspects of original integrity. Currently, the primary (south) façade of Section A possesses three out of four Primary and both Secondary character-defining features of Brutalism, which makes this façade a good example of the style; however, the removal of the original sky bridge and baggage claim area in 2010 negatively impacted the overall integrity of the building. Although Terminal 2 East is not significant under any NRHP or CRHR criteria, because it was designed as an addition to Terminal 1 utilizing a similar design and materials, it is recommended that Terminal 2 East be documented with Terminal 1 prior to demolition in 2034.
3.3.3 Site P-37-036758 – Pacific Southwest Airlines Administrative and Maintenance Facility Building (Potential Period of Significance 1968 to 1987)

Resource Description

The PSA administrative and maintenance facility (AMF) building was designed by La Jolla-based architect Henry Hester (Figure 3.3.3–1) in 1966 (San Diego Union 1966) and completed in 1968 (San Diego Union 1968b). The general contractor for the building was Haas & Haynie, Inc. of San Francisco (San Diego Union 1967g). Additional contractors included: Brawley Steel Co. (reinforcing steel); Fischbach-Oliver (electrical); Kaufman & Walters (finish carpentry and millwork); Quality Masonry, Inc. (masonry); Raymond Concrete Pile Division (concrete piles); San Diego Consolidated Co. (premixed concrete); San Diego Glass & Paint Co. (glass and glazing); San Diego Prestressed Concrete Co. (precast concrete panels); and University Mechanical & Engineering Contractors, Inc. (air conditioning, plumbing, and a fire protection system) (Plate 3.3.3–1) (San Diego Union 1968b). The building was designed as the permanent headquarters for PSA at Lindbergh Field (San Diego Union 1966). Planned for demolition in 2022, the PSA AMF building meets the 50-year minimum age threshold for historic resources as determined by CEQA and NHPA guidelines.

Construction on the building began in February of 1967 (San Diego Union 1967h) and it was completed in July of 1968 (San Diego Union 1968). The San Diego Union (1966, 1967h) described the building as “a three story structure 400 feet long by 150 feet wide” consisting of an “administrative office structure adjacent to new hangars.” Some of the administration offices were described as being “cantilevered out from the third floor” (San Diego Union 1966). When originally constructed in 1968, the building only had windows in the cantilevered portion of the third floor (Plate 3.3.3–2). The north façade of the new hangar was left open to allow for the entrance and exit of large aircraft (Plate 3.3.3–3); a solid concrete wall separated the hangar from the administrative office. All other exterior walls of the administration and hangar portions of the building were also solid concrete. Large, triangular, projecting roof beams connected the hangar with the administrative office. The PSA AMF building had a small, flat-roofed entrance supported by concrete columns that tapered at the top. A concrete block retaining wall was also located at the entrance and ran the entire length of the south façade, curving inward at the entrance. The wall separated the parking lot from the sidewalk immediately adjacent to the building. Large, integrated, stylized signage reading “PSA” was present on the upper left portion of the south and east façades.
Figure 3.3.3–1
Original 1966 Architectural Rendering of the PSA AMF Building
The SDIA Airport Development Plan Project
A Salute to

from the proud builders of their new home!

PUBLIC OPEN HOUSE TOMORROW, JULY 6,
10 A.M. to 2:00 P.M.

We are proud to have been part of the building of PSA's new corporate headquarters. The same
spirit of hard work and dedication that has made PSA the
world's largest airline carrier will carry forward into their new
home. As our most esteemed clients, you are cordially
invited to attend the open house.

HAAS and HAYNE
General Contractors

SAN DIEGO CONSOLIDATED CO.
Pre-Mixed Concrete
3915 W. Washington Blvd
San Diego

SAN DIEGO PRESTRESSED
CONCRETE CO.
Precast Concrete Panels
3925 W. Kearny Mesa Rd
San Diego

UNIVERSITY MECHANICAL & ENGINEERING CONTRACTORS, INC.
Heat & Air Conditioning, Plumbing & Fire Protection System
4280 Alvarado Freeway
San Diego

KARFMAN & WALTERS
Final Carpentry & Millwork
9900 W. Superstar
San Diego

RAYMOND CONCRETE
PILE DIVISION
Concrete Piles
2036 Wilshire Avenue
Long Beach

QUALITY MASONRY, INC.
Masonry
590 S. Coast Drive
La Mesa

FISCHBACH-OLIVER
Electrical
5320 Morey Street
San Diego

BRAWLEY STEEL CO.
Reinforcing Steel
7246 Miramar Road
San Diego

SAN DIEGO GLASS & PAINT CO.
Glass and Glazing
1027 Main Street
San Diego

Plate 3.3.3–1

1968 Advertisement for the PSA AMF Building Open House
The SDIA Airport Development Plan Project
(Advertisement courtesy of the San Diego Union 1968)
Plate 3.3.3-2
1968 Aerial Photograph of the PSA AMF Building
The SDIA Airport Development Plan Project
(Photograph courtesy of the San Diego History Center)
Plate 3.3.3–3

View of the PSA AMF Hangar

The SDIA Airport Development Plan Project

(Photograph courtesy of the San Diego Air and Space Museum)
Once finished, the building could accommodate five aircraft for maintenance. The second floor of the building housed the technical service facilities and the third housed the administration office (San Diego Union 1967h) and a reservation center that provided “the first instant and complete reservation service in the industry” with an IBM 360 computer with 65 “televisions” (San Diego Union 1967a). Each PSA reservationist had a “typewriter-like keyboard to make queries and receive responses” (San Diego Union 1967a) from their television screen. Approximately 40 percent of the second floor and 30 percent of the third floor was to be used for future expansion (San Diego Union 1967h).

PSA became a division of USAir in 1987, and by April of 1988, all PSA branding had been changed to USAir. The San Diego crew was moved to other airports in 1991, and the last of the PSA San Diego network was eliminated in 1994 (Trinkle 2017). In July of 1996, the PSA AMF building was converted to function as the airport’s commuter terminal (Plate 3.3.3–4) (Pescador et al. 2012) by SGPA. In order for the building to operate as a passenger terminal, the following modifications were made: the 64,000-square-foot hangar on the north façade was removed (Plate 3.3.3–5); the triangular projecting roof beams were removed; the small entryway porch was removed; the retaining wall on the south façade was removed; the windows in the cantilevered portion of the third floor were replaced with a horizontal band of metal-framed windows; an awning was installed on the south façade (Plate 3.3.3–6); windows and doors were installed along the north, west (Plate 3.3.3–7), and south façades (Plates 3.3.3–8 and 3.3.3–9) (no windows were installed on the east façade [Plate 3.3.3–10]); and a new ticketing lobby, hold room, and baggage systems were added inside the building.

In 1997, a mural titled “Lucky/Spirit,” depicting Charles Lindbergh holding a model of the Spirit of St. Louis, was installed on the east façade of the building. John and Jeanne Whalen painted the mural across two dozen aluminum panels, which were removed in 2013 in order to make repairs to the PSA AMF building (Hall 2013). The current mural (see Plate 3.3.3–10), created by Jari “WERC” Alvarez, was installed in 2014 and depicts “a collection of images from the Golden Age of Flight: propellers, aircraft, ships, sails, instruments and working hands in a setting of blue skies, sunshine, ocean and clouds” (Bell 2014).

In 2015, the building was again repurposed as the SDCRAA’s headquarters. No exterior modifications appear to have been made at that time; however, the interior was remodeled to eliminate ticket counters, waiting areas, and baggage handling areas in order to repurpose the building as an office and conference space. A site plan has been provided in Figure 3.3.3–2 that color-codes all original and modified portions of the building.
Figure 3.3.3–2
Site Plan for the PSA AMF Building
Site P-37-036758
The SDIA Airport Development Plan Project
Plate 3.3.3–4
2011 View of the Southwest Façade of the PSA AMF Building Turned Commuter Terminal, Facing North
The SDIA Airport Development Plan Project
(Photograph courtesy of Google Street View)
Plate 3.3.3–5
View of the North Façade of the PSA AMF Building
With the 1968 Hangar Removed, Facing Southwest
The SDIA Airport Development Plan Project
Plate 3.3.3-6
View of the South Façade of the PSA AMF
Building Showing the 1996 Awning, Facing West
The SDIA Airport Development Plan Project
Plate 3.3.3–7

View of the Northwest Corner of the PSA AMF
Building Showing the 1996 Windows, Facing South

The SDIA Airport Development Plan Project
Plate 3.3.3–8

View of the South Façade of the PSA AMF
Building Showing the 1996 Windows, Facing Northeast

The SDIA Airport Development Plan Project
Plate 3.3.3–9
View of the South Façade of the PSA AMF Building
Showing the 1996 Windows and Doors, Facing North
The SDIA Airport Development Plan Project
Plate 3.3.3–10
View of the East Façade of the PSA AMF Building, Facing Northwest
The SDIA Airport Development Plan Project
City of San Diego Modernism Context Statement

In October of 2007, the City of San Diego developed and implemented the Modernism Context Statement (City of San Diego 2007). The stated purpose of the Modernism Context Statement is to “assist in the identification, evaluation and preservation of significant historic buildings, districts, sites, and structures associated with the Modernism movement in San Diego from 1935 to 1970.” It was created to better understand “Modern era resources and the types of resources that are significant to the history and development of San Diego.”

When originally constructed in 1968, the PSA AMF building could be best described as a Brutalist-style building that possessed all Primary and Secondary character-defining features of the style, as provided in the Modernism Context Statement (City of San Diego 2007). However, many of these features were impacted or entirely removed in 1996 when the building as repurposed as the airport’s commuter terminal.

According to the Modernism Context Statement, Brutalism originated from the French term béton brut, meaning “raw concrete.” Worldwide, buildings designed in the Brutalist architectural style began to be built as early as the 1950s; however, the style did not reach San Diego until approximately 1965. Largely inspired by Swiss architect Le Corbusier, buildings designed in the Brutalist style are strikingly blockish, geometric, and contain design elements with repetitive shapes. The primary material used in the construction of Brutalist-style buildings is concrete, which not only serves as the primary structural material, but also as the finish. Those critical of the style state that Brutalism buildings disregard the social environment, thereby causing the structure to seem inhuman, stark, and out of place. Most Brutalism buildings located in San Diego are located on the University of California at San Diego campus, although Qualcomm Stadium and the Salk Institute are also examples of Brutalism.

Primary Character-Defining Features

According to the Modernism Context Statement, there are four Primary character-defining features of Brutalism, which have been specifically applied to the PSA AMF building, accordingly:

1. **Exposed and expressive structural system**

 When constructed, the PSA AMF building exhibited large triangular roof beams that connected the administration office to the hangar; however, these beams were removed in 1996 when the building was repurposed as a commuter terminal. As a result, the PSA AMF building does not possess this Primary character-defining feature of Brutalism.

2. **Monumental massing**

 When constructed, the PSA AMF building measured 150 feet wide by 400 feet long.
and could therefore be defined as “monumental.” Although the hangar was removed in 1996, the primary (south) 400-foot-long façade still represents a “monumental” feeling. Therefore, the PSA AMF building does possess this Primary character-defining feature of Brutalism.

3. **Angular and rectilinear forms**

 The PSA AMF building’s original design exhibited rectangular massing with exposed triangular roof beams that extended above the roof. Although the building still retains this rectangular massing, it no longer possesses the triangular roof beams. In addition, while the windows in the cantilevered portion of the third floor are currently rectangular, they replaced the original oval-shaped windows. Therefore, the PSA AMF building does not possess this Primary character-defining feature of Brutalism.

4. **Exposed concrete as building finish**

 The PSA AMF building still retains its original exposed concrete finish, despite the addition of new windows on the north, south, and west façades in 1996. Therefore, the PSA AMF building does possess this Primary character-defining feature of Brutalism.

Of the four Primary character-defining features of Brutalism expressed in the Modernism Context Statement, the PSA AMF building possesses two.

Secondary Character-Defining Features

According to the Modernism Context Statement, there are two Secondary character-defining features of Brutalism, which have been specifically applied to the PSA AMF building, accordingly:

1. **Repetitive patterns**

 The PSA AMF building originally exhibited a repetitive band of oval-shaped windows in the cantilevered portion of the third floor. The oval-shaped windows have since been replaced by a band of rectangular windows that appear unified rather than expressive of a repetitive shape. Therefore, the PSA AMF building does not possess this Secondary character-defining feature of Brutalism.

2. **Intentional avoidance of traditional elements or ornament**

 When originally constructed, the PSA AMF building did not possess any traditional
elements and had very little ornamentation other than the oval-shaped windows in the cantilevered portion of the third floor and the triangular roof beams. Additionally, no other windows were present prior to the 1996 renovation. At that time, windows were added to the north, west, and south façades and an ornamental awning was added above the south façade entryway. Due to the modifications that the building has undergone since its construction, it does not possess this Secondary characteristic of Brutalism.

Of the two Secondary character-defining features of Brutalism expressed in the Modernism Context Statement, the PSA AMF building does not possess either.

Integrity Evaluation

When evaluating a historic resource, integrity is the authenticity of the resource’s physical identity clearly indicated by the retention of characteristics that existed during its period of significance. It is important to note that integrity is not the same as condition. Integrity directly relates to the presence or absence of historic materials and character-defining features, while condition relates to the relative state of physical deterioration of the resource. In most instances, integrity is more relevant to the significance of a resource than condition; however, if a resource is in such poor condition that original materials and features may no longer be salvageable, then the resource’s integrity may be adversely impacted.

In order to assess each aspect of integrity when evaluating the PSA AMF building, the following steps were taken, as recommended by Milbrooke et al. (1998):

1. **Location** is the place where a resource was constructed or where an event occurred.

 Integrity of location was assessed by reviewing historic records and aerial photographs in order to determine if the building has always existed at its present location or if it has been moved or rebuilt. A review of historic aerial photographs revealed that the PSA AMF building has not been moved since its date of construction. Therefore, the building retains integrity of location.

2. **Design** results from intentional decisions made during the conception and planning of a resource. Design includes form, plan, space, structure, and style of a property.

 Integrity of design was assessed by evaluating the spatial arrangement of the building and any unique architectural features present. The design of the PSA AMF building has been significantly altered since its period of construction. When the building was repurposed as the airport’s commuter terminal in 1996, numerous alterations were made, including: removal of the hangar on the north façade; removal of the triangular projecting roof beams; removal of the small entryway porch; removal of the retaining
wall on the south façade; replacement of the windows in the cantilevered portion of the third floor; installation of an awning on the south façade; and installation of windows and doors along the north, west, and south façades. In 2015, the building was turned into the SDCRAA’s headquarters and while no exterior modifications appear to have been made at that time, the interior was remodeled in order to eliminate ticket counters, waiting areas, and baggage handling areas. Because this building no longer reflects its original design in form, plan, space, structure, and style, it does not retain integrity of design.

3. **Setting** applies to a physical environment, the character of a resource’s location, and a resource’s relationship to the surrounding area.

Integrity of setting was assessed by inspecting the elements of the property, which included topographic features, open space, views, landscapes, vegetation, man-made features, and relationships between buildings and other features. The setting of the PSA AMF building has not significantly changed since its construction in 1968. At that time, the airport was already heavily developed with parking lots and other industrial buildings. While the setting has evolved over time with the presence of newer buildings and building arrangements, the overall setting has not changed from that of an airport. Therefore, the building retains integrity of setting.

4. **Materials** comprise the physical elements combined or deposited in a particular pattern or configuration to form a property.

Integrity of materials was assessed by determining the presence or absence of original building materials, as well as the possible introduction of materials, which may have altered the architectural design of the building. When renovated in 1996, original building materials were removed and newer materials were introduced, which negatively impacted the PSA AMF building’s integrity of materials. Original materials that were removed include the: hangar; triangular roof beams; oval-shaped windows in the cantilevered portion of the third floor; flat-roofed entryway on the south façade; and concrete block retaining wall separating the building from the parking lot. New materials that were introduced during the 1996 remodel include: all windows on the north and west façades; all windows and doors on the south façade (including replacement of the oval-shaped windows); and the decorative metal awning on the south façade. Due to the alterations made to the building during the 1996 renovation, the PSA AMF building does not retain integrity of materials.
5. **Workmanship** consists of the physical evidence of crafts employed by a particular culture, people, or artisan, which includes traditional, vernacular, and high styles.

Integrity of workmanship was assessed by evaluating the quality of the architectural features present in the building. The original PSA AMF building was a three-story building constructed of poured concrete slabs with a cantilevered projection on the third floor. While the administration office concrete walls are still extant, the entire hangar was removed in 1996. In addition, windows were cut into the concrete walls when the building was repurposed as a commuter terminal. While the original poured concrete is still present, it was negatively impacted by the introduction of the non-original windows, and with the removal of the hangar, a significant portion of the original workmanship has been lost. Therefore, the building does not retain integrity of workmanship.

6. **Feeling** relies upon present physical features of a property to convey and evoke an aesthetic or historic sense of past time and place.

Integrity of feeling was assessed by evaluating whether or not the resource’s features, in combination with its setting, conveyed an aesthetic sense of the property around 1968 when the PSA AMF building was constructed. The PSA AMF building did not undergo any modifications until the renovation in 1996, which negatively impacted its integrity of feeling. While the building retains integrity of setting, it no longer retains integrity of design or materials. The large projecting roof beams and the oval-shaped windows gave the building a feeling of futurism, which was common in 1960s building designs associated with airline/space travel and modernism. The small entryway and the curved concrete block retaining wall created a barrier between the exterior and interior of the building. Removal of these features and installation of additional windows and entryways transformed the building into a post-Modern-style building with a feeling of openness; as a result, the transition between the building’s exterior and interior became less distinct. Because the original design of the building and its original materials have been altered so significantly, the building does not retain integrity of feeling.

7. **Association** directly links a property with a historic event, activity, or person of past time and place, and requires the presence of physical features to convey the property’s character.

Integrity of association was assessed by evaluating whether the building was ever directly associated with important events or individuals. While the building is
associated with the expansion of PSA at Lindbergh Field and the modernization of the airline reservation system, the removal of the PSA AMF building hangar and the eventual upgrade of the original IBM 360 computer system have negatively impacted the building’s original associations. In addition, no specific historic events or activities are known to have occurred at the PSA AMF building. Therefore, the building has never possessed integrity of association.

NRHP/CRHR Evaluation

In order for a historic resource to be considered eligible for listing on the NRHP or the CRHR, it must be determined significant at the local, state, or national level under one or more of the following criteria:

- **NRHP/CRHR Criterion A/1:**

 It is associated with events that have made a significant contribution to the broad patterns of history.

 The PSA AMF building was originally constructed as the PSA San Diego headquarters during a period of increased air travel in the 1960s. When constructed, the building was equipped with “the first instant and complete reservation service in the industry” (*San Diego Union* 1967a). However, PSA became a division of USAir in 1987, and the original reservation system was upgraded and the interior of the building remodeled when USAir vacated the building in 1996. Although PSA operated at Lindbergh Field for 39 years, the PSA AMF building was not the first PSA building constructed at the airport; PSA had previously invested in several hangars, an engine overhaul shop, and an administrative building prior to the construction of the PSA AMF building in 1968. With the removal of the original hangar and reservation system, the building no longer retains any characteristics linking it to PSA. Therefore, the building is not significant under Criterion A/1.

- **NRHP/CRHR Criterion B/2:**

 It is associated with the lives of persons important in our past.

 No single person is specifically associated with the PSA AMF building. The building originally functioned as an administrative and maintenance facility before it was repurposed into a commuter terminal in 1996, and then as the SDCRAA headquarters in 2015. This was not the only PSA facility in San Diego or the United States, and it is not specifically associated with any leadership of the company. Further, no PSA employees are known to have been significant at the local, state, or national level. Additionally, no known significant individuals are associated with the building’s use
as the commuter terminal or the SDCRAA headquarters. Therefore, the building is not significant under Criterion B/2.

- **NRHP/CRHR Criterion C/3:**

 It embodies the distinctive characteristics of a type, period, region, or method of construction; represents the work of an important creative individual; or possesses high artistic values.

 When completed in 1968, the PSA AMF building possessed all four Primary and both Secondary character-defining features of the Brutalism, as provided in the Modernism Context Statement. Modifications made to the building in 1996 in order to repurpose it as a commuter terminal impacted the majority of these features. Currently, the building possesses only two of the four Primary and none of the Secondary character-defining features. These changes negatively impacted the building’s integrity of design, materials, workmanship, feeling, and association.

 The building was designed by La Jolla-based Modernist architect Henry Hester; however, the building is not most representative of Hester’s work, which primarily consisted of Contemporary-, Futurist- and Post-and-Beam-style residences and smaller office buildings (City of San Diego 2007). Regardless, the changes made to the PSA AMF building during the 1996 renovation removed most of the character-defining features, effectively destroying the link the building once had to its designer.

 Therefore, the PSA AMF building does not possess any distinctive characteristics of the Brutalism style or its 1968 period of construction, nor is it representative of the poured concrete method of construction. Furthermore, the building does not represent the work of an important creative individual or possess high artistic values. Therefore, the building is not significant under Criterion C/3.

- **NRHP/CRHR Criterion D/4:**

 It has yielded, or may be likely to yield, information important in prehistory or history.

 The PSA AMF building does not have potential to yield any additional information important to local, state, or national history, and is therefore not significant under Criterion D/4.
Conclusion

The PSA AMF building was constructed as a Brutalist-style administrative and maintenance facility in 1968. The building functioned as the San Diego PSA headquarters until the company became a division of USAir in 1987. Although the PSA signage was replaced with USAir signage in 1988, the building itself was not significantly altered until it was repurposed into the airport’s commuter terminal in 1996. Modifications made to the building significantly impacted four of the six character-defining features of Brutalism, which the building previously possessed. Currently, the building only possesses monumental massing and an exposed concrete finish. In addition, the building only retains two (location and setting) out of seven original aspects of integrity. Due to the modifications made to the building since its 1968 to 1987 period of significance, its overall loss of integrity, and its lack of association with any specific significant persons or events, the PSA AMF building is not significant under any NRHP or CRHR criteria and no adverse effect would result from its demolition.
3.3.4 Site P-37-036759 – United Air Freight Building (Potential Period of Significance 1968)

Resource Description

The United Air freight (UAF) building located at 2375 Air Lane was designed by Paderewski, Dean & Associates in 1968 as an air freight terminal for United Airlines, with Charmac, Inc. of Escondido as the general contractor (San Diego Union 1968c). The UAF building is planned for demolition in 2022, and therefore meets the 50-year minimum age threshold for historic resources, as determined by CEQA and NHPA guidelines.

Although the facility opened in 1968, the address did not appear in City of San Diego directories until 1971. The building functioned as the first dedicated air freight terminal in San Diego and was constructed in response to an increase in United Airlines air freight traffic, which doubled between 1965 and 1967 (San Diego Union 1968c). The construction of this building was on schedule with the Unified Port District’s 1967 to 1968 plans for an “orderly expansion of passenger, baggage, and air freight handling facilities at Lindbergh Field” (San Diego Unified Port District 1967-1968).

The building is currently owned by the SDCRAA and the current tenant is United Cargo. No official building records or permits were available on file at the City or County of San Diego offices. Instead, historic aerial photographs were reviewed to determine if the building has been modified since its initial date of construction. Plates 3.3.4–1 and 3.3.4–2 indicate that the UAF building once had a centered sign on the northwest façade; however, the current sign is off-center. Plate 3.3.4–2 also shows five matching loading dock doors, which have since been replaced with three corrugated metal roll-top doors and two paneled roll-top doors at an unknown date (Plate 3.3.4–3).

Plate 3.3.4–1: View of the west façade of the UAF building in 1968.
(Photograph courtesy of San Diego Union 1968c)
Plate 3.3.4–2
Circa 1968 to 1972 Aerial View of the West Façade of the UAF Building
The SDIA Airport Development Plan Project
Plate 3.3.4–3

View of the West Façade of the UAF Building, Facing East

The SDIA Airport Development Plan Project
A site plan has been provided in Figure 3.3.4–1 that color-codes all original and modified portions of the building. The building is currently approximately 106 by 120 feet with a rectangular footprint and a low-pitched, side-gabled roof. The west and east façades are primarily concrete block and smooth stucco, while the north and south façades are unadorned and only feature corrugated metal siding. The west façade allows public access and features the five loading docks with roll-top doors. There are two groupings of floor-to-ceiling windows on the first and second floors of the west façade. Above both are small, rectangular, cantilevered overhangs. A larger, rectangular, cantilevered overhang extends above the loading dock doors to the roofline (see Plate 3.3.4–3). The north and south façades are largely comprised of corrugated aluminum with concrete block at the corners (Plates 3.3.4–4 and 3.3.4–5). The east façade exhibits four roll-top doors with the same rectangular, cantilevered overhang that stretches to the roofline (Plate 3.3.4–6).

City of San Diego Modernism Context Statement

In October of 2007, the City of San Diego developed and implemented the Modernism Context Statement (City of San Diego 2007). The stated purpose of the Modernism Context Statement is to “assist in the identification, evaluation and preservation of significant historic buildings, districts, sites, and structures associated with the Modernism movement in San Diego from 1935 to 1970.” It was created to better understand “Modern era resources and the types of resources that are significant to the history and development of San Diego.”

When originally constructed in 1968, the UAF building could be best described as an International-style building. According to the Modernism Context Statement (City of San Diego 2007), the International style was a major worldwide architectural trend in the 1920s and 1930s, reflecting the formative decades of Modernism prior to World War II. Although the International style originated in western Europe, it transcended any national or regional identity because International-style architecture made no reference to local vernaculars or traditional building forms. The style quickly migrated to the United States as European architects fled prior to World War II. In Los Angeles, immigrant architects Rudolph Schindler and Richard Neutra were instrumental in popularizing the International style. The emergence of International architecture in San Diego came later, as most examples were built after 1935 and into the 1970s.
Figure 3.3.4–1
Site Plan for the UAF Building
Site P-37-036759
The SDIA Airport Development Plan Project
Plate 3.3.4–4

View of the South Façade of the UAF Building, Facing Northeast

The SDIA Airport Development Plan Project
Plate 3.3.4–5

View of the North Façade (Right) of the UAF Building, Facing West

The SDIA Airport Development Plan Project
Plate 3.3.4–6
View of the South and East Façades of the UAF Building, Facing Northwest
The SDIA Airport Development Plan Project
Primary Character-Defining Features

According to the Modernism Context Statement, there are four Primary character-defining features of the International architectural style, which have been specifically applied to the UAF building, accordingly:

1. **Flat roofs (cantilevered slabs or parapets)**

 The UAF building features a side-gabled roof. Although the building does possess cantilevered projections, these are not associated with the roof structure. Therefore, the UAF building does not possess this Primary character-defining feature of the International style.

2. **Lack of applied ornament**

 The UAF building does not feature any applied ornamentation, and therefore, does possess this Primary character-defining feature of the International style.

3. **Horizontal bands of flush windows**

 The UAF building features two groups of five floor-to-ceiling windows along the primary (west) façade. However, the windows are not organized in a horizontal band across a majority of the façade and are recessed back from the concrete block exterior, which is more representative of window arrangements seen in Contemporary-style commercial architecture. Therefore, the UAF building does not possess this Primary character-defining feature of the International style.

4. **Asymmetrical façades**

 The UAF building features an asymmetrical façade with the southwestern portion used as office space and the northern and eastern portions for truck loading and unloading. Therefore, the UAF building does possess this Primary character-defining feature of the International style.

Of the four Primary character-defining features of the International architectural style expressed in the Modernism Context Statement, the UAF building possesses two.

Secondary Character-Defining Features

According to the Modernism Context Statement, there are four Secondary character-defining features of the International architectural style, which have been specifically applied to
the UAF building, accordingly:

1. **Square corners**

 The UAF building features square corners, and therefore, does possess this Secondary character-defining feature of the International style.

2. **Common exterior materials include concrete, brick, and stucco**

 The UAF building features concrete block construction at the corners and a smooth stucco finish on the cantilevered projections. Therefore, the UAF building does possess this Secondary character-defining feature of the International style.

3. **Steel sash windows (typically casement)**

 The UAF building features steel, sash, fixed-pane windows; however, none are casement. Therefore, the UAF building does not possess this Secondary character-defining feature of the International style.

4. **Corner windows**

 The UAF building does not feature any corner windows; each corner of the building is a wall terminus. Therefore, the UAF building does not possess this Secondary character-defining feature of the International style.

Of the four Secondary character-defining features of the International architectural style expressed in the Modernism Context Statement, the UAF building currently **possesses two**.

Integrity Evaluation

When evaluating a historic resource, integrity is the authenticity of the resource’s physical identity clearly indicated by the retention of characteristics that existed during its period of significance. It is important to note that integrity is not the same as condition. Integrity directly relates to the presence or absence of historic materials and character-defining features, while condition relates to the relative state of physical deterioration of the resource. In most instances, integrity is more relevant to the significance of a resource than condition; however, if a resource is in such poor condition that original materials and features may no longer be salvageable, then the resource’s integrity may be adversely impacted.

In order to assess each aspect of integrity when evaluating the UAF building, the following steps were taken, as recommended by Milbrooke et al. (1998):
1. **Location** is the place where a resource was constructed or where an event occurred.

 Integrity of location was assessed by reviewing historic records and aerial photographs in order to determine if the building has always existed at its present location or if it has been moved or rebuilt. A review of historic aerial photographs revealed that the UAF building has not been moved since its date of construction. Therefore, the building retains integrity of location.

2. **Design** results from intentional decisions made during the conception and planning of a resource. Design includes form, plan, space, structure, and style of a property. Integrity of design was assessed by evaluating the spatial arrangement of the building and any unique architectural features present. No building permits for the UAF building could be found; however, historic photographs revealed that only minor changes have been made to the building since its construction. These changes include the sign and loading dock doors on the primary (west) façade. Because this building reflects its original design in form, plan, space, structure, and style, it retains integrity of design.

3. **Setting** applies to a physical environment, the character of a resource’s location, and a resource’s relationship to the surrounding area.

 Integrity of setting was assessed by inspecting the elements of the property, which included topographic features, open space, views, landscapes, vegetation, man-made features, and relationships between buildings and other features. The setting of the UAF building has not significantly changed since its construction in 1968, when the airport had already been heavily developed with parking lots and other industrial buildings. While the setting has evolved over time with the presence of newer buildings and building arrangements, the overall setting has not changed from that of an airport. Therefore, the building retains integrity of setting.

4. **Materials** comprise the physical elements combined or deposited in a particular pattern or configuration to form a property.

 Integrity of materials was assessed by determining the presence or absence of original building materials, as well as the possible introduction of materials, which may have altered the architectural design of the building. The UAF building does not appear to have been significantly altered in any way. Besides the minor alterations on the primary (west) façade (replacement of the sign and loading dock doors), the building maintains its original materials. Therefore, the building retains integrity of materials.
5. **Workmanship** consists of the physical evidence of crafts employed by a particular culture, people, or artisan, which includes traditional, vernacular, and high styles.

Integrity of workmanship was assessed by evaluating the quality of the architectural features present in the building. Because there is no evidence indicating that the UAF building has undergone any major alterations, it retains integrity of workmanship.

6. **Feeling** relies upon present physical features of a property to convey and evoke an aesthetic or historic sense of past time and place.

Integrity of feeling was assessed by evaluating whether or not the resource’s features, in combination with its setting, conveyed an aesthetic sense of the property in 1968 when the UAF building was constructed. Because the building has retained all other aspects of integrity, it also retains integrity of feeling.

7. **Association** directly links a property with a historic event, activity, or person of past time and place, and requires the presence of physical features to convey the property’s character.

The UAF building has been associated with United Airlines at Lindbergh Field since its construction in 1968; however, historic research revealed that no important events or individuals are associated with the building. Therefore, the building has never possessed integrity of association.

NRHP/CRHR Evaluation

In order for a historic resource to be considered eligible for listing on the NRHP or the CRHR, it must be determined significant at the local, state, or national level under one or more of the following criteria:

- **NRHP/CRHR Criterion A/1:**

 It is associated with events that have made a significant contribution to the broad patterns of history.

 Thorough archival research revealed that no significant events have taken place at the UAF building. The building has always functioned as a United Airlines air cargo facility, and when constructed in 1968, it was the first terminal specifically designed for air freight travel in San Diego. Constructed in response to the increase in air freight traffic in the late 1960s, the building was “large enough to handle 500,000 pounds of freight a day, or three all-cargo jets at a time” *(San Diego Union* 1968c). However, the
building represents the evolution, not the introduction, of air freight travel at Lindbergh Field. Prior to the construction of the UAF building, United Airlines Air Freight occupied a corner of the 1952 passenger terminal on Pacific Highway (San Diego Union 1968c). Although the UAF building allowed United Airlines to accommodate additional air freight traffic, the expansion it represents did not provide a significant contribution to the broad patterns of local, state, or national history. Because the UAF building cannot be linked with any significant historic events, it is not significant under Criterion A/1.

- **NRHP/CRHR Criterion B/2:**

 It is associated with the lives of persons important in our past.

 No single person is specifically associated with the UAF building. Because archival research did not associate the building with any persons important in local, state, or national history, it is not significant under Criterion B/2.

- **NRHP/CRHR Criterion C/3:**

 It embodies the distinctive characteristics of a type, period, region, or method of construction; represents the work of an important creative individual; or possesses high artistic values.

 While the UAF building exhibits several Primary and Secondary character-defining characteristics of the International architectural style, it is not particularly distinctive nor is it representative of the work of an important architect or builder. The characteristics of this building are not representative of a particular type, period, region, or method of construction. Although designed by noted Modernist architects Paderewski, Dean & Associates, the UAF building is simple and functional, does not possess high artistic value, and is not representative of Paderewski, Dean & Associates’ more notable works, such as the airport’s Terminals 1 and 2 East. For this reason, the building is not significant under Criterion C/3.

- **NRHP/CRHR Criterion D/4:**

 It has yielded, or may be likely to yield, information important in prehistory or history.

 The UAF building does not have potential to yield any additional information important to local, state, or national history, and therefore, is not significant under Criterion D/4.
Conclusion

The International-style UAF building was constructed in 1968. Although the building retains six out of seven aspects of original integrity, it is not a good example of a specific type, method, or period of construction, nor is it representative of the work of a creative individual. Currently, the building possesses only two Primary (lack of applied ornament and asymmetrical façade) and two Secondary (square corners and a concrete and stucco exterior) character-defining features of the International style. In addition, the building is not associated with any significant persons or events, nor would further study of the building yield any additional information about the International style of architecture or the history of the air freight industry. Therefore, the UAF building is not significant under any NRHP or CRHR criteria and no adverse effect would result from its demolition.
3.3.5 Site P-37-036760 – Air Support Facilities Building (Potential Period of Significance 1970)

Resource Description

The Air Support Facilities (ASF) building was designed by Paderewski, Dean & Associates (San Diego Union 1970b) and, according to the Commercial-Industrial Building Record, constructed in 1970 (San Diego Union 1970c) with an effective year of 1971. According to the San Diego Union (1970c), Nielsen Construction Co. was the contractor for the “freight terminal for Air Support Facilities” under a $163,600 permit. Planned for demolition in 2022, the ASF building meets the 50-year minimum age threshold for historic resources as determined by CEQA and NHPA guidelines.

The building record describes the ASF building as having two stories with a steel frame, heavy steel trusses, metal walls and exterior finishes, a reinforced concrete foundation, and concrete floors. In total, the ASF building was recorded as being 24,200 square feet (a 1,000-square-foot office on the first floor, a 3,168-square-foot office on the second floor, and 20,032 square feet of warehouse space). The building record lists four different tenants of the facility at different times: Air Support Facilities, Inc. (warehouse), David Porter (unlisted use), American Airlines (offices), and Western Airlines (offices). Air Support Facilities, Inc. was a California firm that operated under the name “Shaker Express.” Currently, the ASF building serves as the Southwest Airlines Cargo facility. A site plan has been provided in Figure 3.3.5–1 that color-codes all original and modified portions of the building.

The north façade is covered in cream-colored, corrugated, aluminum siding (Plate 3.3.5–1). The east façade has 10 loading docks with roll-top doors and four pedestrian entrances (Plate 3.3.5–2). Above the loading docks and entrances is a rectangular, cantilevered overhang that runs the entire length of the east façade (Plate 3.3.5–3). The west façade features 13 loading docks with roll-top doors and three pedestrian entrances (Plate 3.3.5–4). Above the loading docks and entrances is a rectangular, cantilevered overhang runs the entire length of the west façade (Plate 3.3.5–5).

A separate building was constructed onto the south façade of the ASF building in 1977. Most of the south façade is connected to this newer building, but a small portion of the eastern half is exposed and covered in the same cream-colored, corrugated, aluminum siding as the north façade of the 1970 ASF building (Plates 3.3.5–6). The 1977 building replaced an American Airlines aircraft washing facility and was meant for use by Air Support Facilities, Inc. (San Diego Union 1977b). Much like the 1970 ASF building, the 1977 building also functioned as an air freight facility.

Although designed in the same style using the same materials as the 1970 ASF building (Plate 3.3.5–7), the 1977 building will not meet the 50-year minimum age threshold to be considered a historic structure by the time of planned demolition in 2022, and is therefore not included in the following significance evaluation.
Figure 3.3.5–1
Site Plan for the ASF Building
Site P-37-036760
The SDIA Airport Development Plan Project
Plates 3.3.5-1

View of the North Façade of the ASF Building, Facing Southeast

The SDIA Airport Development Plan Project
Plates 3.3.5–2

View of the Loading Docks and Pedestrian Entrance
Doors on the East Façade of the ASF Building, Facing West

The SDIA Airport Development Plan Project
Plates 3.3.5–3

View of the East Façade of the ASF Building, Facing Southwest

The SDIA Airport Development Plan Project
Plates 3.3.5–4

View of the Loading Docks and Pedestrian Entrance
Doors on the West Façade of ASF Building, Facing Southeast

The SDIA Airport Development Plan Project
Plates 3.3.5–5

View of the West Façade of the ASF Building, Facing East

The SDIA Airport Development Plan Project
Plates 3.3.5–6

View of the South Façade of the 1970 ASF Building (Left), Showing the Connection With the 1977 ASF Building, Facing East

The SDIA Airport Development Plan Project
Plates 3.3.5–7

View of the East Façade of the 1970 ASF Building (Right) Connected to the North Façade of the 1977 ASF Building (Left), Facing West

The SDIA Airport Development Plan Project
City of San Diego Modernism Context Statement

In October of 2007, the City of San Diego developed and implemented the Modernism Context Statement (City of San Diego 2007). The stated purpose of the Modernism Context Statement is to “assist in the identification, evaluation and preservation of significant historic buildings, districts, sites, and structures associated with the Modernism movement in San Diego from 1935 to 1970” and was created to better understand “Modern era resources and the types of resources that are significant to the history and development of San Diego.”

Definitions from the Modernism Context Statement were used to classify the ASF building. While primarily an industrial building, the ASF building exhibits more character-defining features of the International style than any other modern architectural style. According to the Modernism Context Statement, the International style was a major worldwide architectural trend in the 1920s and 1930s that reflects the formative decades of Modernism prior to World War II. Although the International style originated in western Europe, it transcended any national or regional identity because International-style architecture made no reference to local vernaculars or traditional building forms. The style quickly migrated to the United States as European architects fled prior to World War II. In Los Angeles, immigrant architects Rudolph Schindler and Richard Neutra were instrumental in popularizing the International style. The emergence of International architecture in San Diego came later, as most examples were built after 1935 and into the 1970s.

Primary Character-Defining Features

According to the Modernism Context Statement, there are four Primary character-defining features of the International architectural style, which have been specifically applied to the ASF building, accordingly:

1. Flat roofs (cantilevered slabs or parapets)

 The ASF building features a flat roof with thick, cantilevered projections on the east and west façades. Therefore, the ASF building does possess this Primary character-defining feature of the International style.

2. Lack of applied ornament

 The ASF building does not feature any applied ornamentation, and therefore, does possess this Primary character-defining feature of the International style.

3. Horizontal bands of flush windows

 The ASF building features two groupings of floor-to-ceiling windows on either end of the west façade that are not organized in a horizontal band. Therefore, the ASF building
does not possess this Primary character-defining feature of the International style.

4. **Asymmetrical façades**

The ASF building features a symmetrical façade. While there are slight variations present, such as different-sized windows, doors, and loading dock materials, there are no prominent features that could be considered to skew the symmetry of any of the façades. Therefore, the ASF building does not possess this Primary character-defining feature of the International style.

Of the four Primary character-defining features of the International architectural style expressed in the Modernism Context Statement, the ASF building possesses two.

Secondary Character-Defining Features

According to the Modernism Context Statement, there are four Secondary character-defining features of the International architectural style, which have been specifically applied to the ASF building, accordingly:

1. **Square corners**

 The ASF building features square corners, and therefore, does possess this Secondary character-defining feature of the International style.

2. **Common exterior materials include concrete, brick, and stucco**

 The ASF building features corrugated, aluminum siding. It does not exhibit concrete, brick, or stucco. Therefore, the ASF building does not possess this Secondary character-defining feature of the International style.

3. **Steel sash windows (typically casement)**

 The ASF building features steel sash, fixed-pane windows; however, none are casement-style. Therefore, the ASF building does not possess this Secondary character-defining feature of the International style.

4. **Corner windows**

 The ASF building does not feature any corner windows, as each corner of the building is a wall terminus. Therefore, the ASF building does not possess this Secondary
character-defining feature of the International style.

Of the four Secondary character-defining features of the International architectural style expressed in the Modernism Context Statement, the ASF building possesses one.

Integrity Evaluation

When evaluating a historic resource, integrity is the authenticity of the resource’s physical identity clearly indicated by the retention of characteristics that existed during its period of significance. It is important to note that integrity is not the same as condition. Integrity directly relates to the presence or absence of historic materials and character-defining features, while condition relates to the relative state of physical deterioration of the resource. In most instances, integrity is more relevant to the significance of a resource than condition; however, if a resource is in such poor condition that original materials and features may no longer be salvageable, then the resource’s integrity may be adversely impacted.

In order to assess each aspect of integrity when evaluating the ASF building, the following steps were taken, as recommended by Milbrooke et al. (1998):

1. **Location** is the place where a resource was constructed or where an event occurred.

 Integrity of location was assessed by reviewing historic records and aerial photographs in order to determine if the building had always existed at its present location or if it had been moved or rebuilt. The ASF building has not been moved since its date of construction, and therefore, retains integrity of location.

2. **Design** results from intentional decisions made during the conception and planning of a resource. Design includes form, plan, space, structure, and style of a property.

 Integrity of design was assessed by evaluating the spatial arrangement of the building and any unique architectural features present. A review of the building record only identified interior changes, such as office renovations (1979 and 1981) and interior finishes (1971). However, historic aerial photographs and newspaper articles reveal that the ASF building did not use to be connected to another building, as it is currently. In 1977, a second building was constructed on the south façade of the 1970 ASF building. Although the north, west, and east façades have been maintained, the form, plan, space, and structure of the 1970 ASF building have been modified with the addition of the 1977 building. Therefore, the ASF building does not retain integrity of design.
3. **Setting** applies to a physical environment, the character of a resource’s location, and a resource’s relationship to the surrounding area.

Integrity of setting was assessed by inspecting the elements of the property, which included topographic features, open space, views, landscapes, vegetation, man-made features, and relationships between buildings and other features. The setting of the ASF building has not significantly changed since its construction in 1970. By that time, the airport has already been heavily developed with parking lots and other industrial buildings, just as it is today. While the setting has evolved over time with the presence of newer buildings and building arrangements, the overall setting has not changed from that of an airport. Therefore, the ASF building retains integrity of setting.

4. **Materials** comprise the physical elements combined or deposited in a particular pattern or configuration to form a property.

Integrity of materials was assessed by determining the presence or absence of original building materials, as well as the possible introduction of materials, which may have altered the architectural design of the building. The ASF building has been significantly altered since its construction in 1970, impacting its original building materials. The building constructed onto the south façade in 1977 removed the majority of the façade, significantly impacting the integrity of the building. In addition, because the ASF building and the 1977 building were constructed nearly 10 years apart, materials of different ages are present. Although designed in the same style using the same materials as the 1970 ASF building, the 1977 building will not meet the 50-year minimum age threshold, and therefore, is not eligible to be a contributing element to the 1970 ASF building. Therefore, the ASF building does not retain integrity of materials.

5. **Workmanship** consists of the physical evidence of crafts employed by a particular culture, people, or artisan, which includes traditional, vernacular, and high styles.

Integrity of workmanship was assessed by evaluating the quality of the architectural features present in the building. Although constructed in the same style and utilizing the same types of materials, the 1977 building addition on the south façade of the 1970 ASF building represents a different phase of building, and thus, different physical evidence of construction. Therefore, the ASF building does not retain integrity of workmanship.

6. **Feeling** relies upon present physical features of a property to convey and evoke an
aesthetic or historic sense of past time and place.

Integrity of feeling was assessed by evaluating whether or not the resource’s features, in combination with its setting, conveyed an aesthetic sense of the property in 1970 when the ASF building was constructed. Although the north, east, and west façades have not been altered, the 1977 building addition on the south façade has created a seemingly monumental building. The ASF building is still used for its original function and has retained integrity of setting; however, the 1970 ASF building has been enlarged to roughly double its original size. Because the ASF building has been modified, it does not retain integrity of feeling.

7. **Association** directly links a property with a historic event, activity, or person of past time and place, and requires the presence of physical features to convey the property’s character.

Historic research revealed that no important events or individuals are closely associated with the ASF building, and therefore, it never possessed integrity of association.

NRHP/CRHR Evaluation

In order for a historic resource to be considered eligible for listing on the NRHP or the CRHR, it must be determined significant at the local, state, or national level under one or more of the following criteria:

- **NRHP/CRHR Criterion A/1:**

 It is associated with events that have made a significant contribution to the broad patterns of history.

Archival research revealed that no significant events have taken place at the ASF building. The building is an air cargo facility that is not a significant contributor to local, state, or national history. When this building was constructed in 1970, cargo facilities were not a rarity at airports. Because the ASF building cannot be linked with any historic events, it cannot be considered significant under Criterion A/1.

- **NRHP/CRHR Criterion B/2:**

 It is associated with the lives of persons important in our past.

No single person is specifically associated with the ASF building. Because archival research did not associate the building with any persons important in local, state, or national history, it is not significant under Criterion B/2.
• **NRHP/CRHR Criterion C/3:**
It embodies the distinctive characteristics of a type, period, region, or method of construction; represents the work of an important creative individual; or possesses high artistic values.

The ASF building only exhibits a few of the Primary and Secondary character-defining features of the International style, is not a particularly distinctive example, and does not embody characteristics representative of a specific type, period, region, or method of construction. Although designed by the noted architectural firm Paderewski, Dean & Associates, the ASF building is a simple, functional, does not exhibit high artistic value, and is not representative of the firm’s more notable works. Therefore, the ASF building is not significant under Criterion C/3.

• **NRHP/CRHR Criterion D/4:**
It has yielded, or may be likely to yield, information important in prehistory or history.

The ASF building does not have potential to yield any additional information important to local, state, or national history, and therefore, is not significant under Criterion D/4.

Conclusion
The ASF building was constructed as an air freight terminal in 1970. Currently, the building retains only two out of seven aspects of original integrity and is not a good example of a specific type, method, or period of construction, nor is it representative of the work of a creative individual. The building possesses only two Primary and one Secondary character-defining features of the International style, which makes it barely representative of this architectural style. In addition, the ASF building is not associated with any significant persons or events, nor would further study yield any additional information about the International style of architecture or the history of the air freight industry. Therefore, the ASF building is not significant under any NRHP or CRHR criteria and no adverse effect would result from its demolition.
3.0–148

3.3.6 Site P-37-036761 – Air Oasis Hangar Building (Potential Period of Significance 1962 to 1964)

Resource Description

The Air Oasis hangar (AOH) building was constructed between 1962 and 1964 at 2330 Stillwater Road. The address is first listed in the San Diego Union in 1962, announcing a $50,000 permit for the Air Oasis Company to construct new aircraft hangars, and the building first appears in aerial photographs in 1964 (San Diego Union 1962a). Planned for demolition in 2022, the AOH building meets the 50-year minimum age threshold for historic resources as determined by CEQA and NHPA guidelines.

The AOH building was built in response to the rapid growth of the Air Oasis Company in the early 1960s. The company was “a scheduled inter-state airline” offering daily flights from Lindbergh Field to Oceanside (Palomar Airport), Long Beach, and Los Angeles (San Diego Union 1962b). The company also functioned as a small flight school for private license pilots (San Diego Union 1961b). The Air Oasis Company operated in California as part of the Pacific Aeromotive Corporation until 1966 (Craig 1966). From 1968 to 1970, the AOH building was listed as vacant in San Diego city directories. Beginning in 1971, the building was occupied by American Airlines, who is till the current tenant; the building is currently owned by the SDCRAA. A site plan has been provided in Figure 3.3.6–1 that color-codes all original and modified portions of the building.

The AOH building has a rectangular footprint, measures approximately 104 by 107 feet, with no decorative elements. The building has a flat roof and all four façades are covered in corrugated aluminum siding. The east façade of the building has five metal-framed pivot windows, three pedestrian entrances, and two sliding doors (Plate 3.3.6–1), the north façade has metal-framed pivot windows (Plate 3.3.6–2), the south façade has two pedestrian entrances (Plate 3.3.6–3), and the west façade has five sliding door panels (Plate 3.3.6–4). The doors to the hangar utilize three overhead tracks that extend to the north (Plate 3.3.6–5) and south (Plate 3.3.6–6) of the west façade. The tracks enable the hangar doors to be opened beyond the building walls in order to not interfere with the passage of large aircraft in and out of the building.
Figure 3.3.6–1
Site Plan for the AOH Building
Site P-37-036761
The SDIA Airport Development Plan Project
Plate 3.3.6–1
View of the East Façade of the AOH Building, Facing Southwest
The SDIA Airport Development Plan Project
Plate 3.3.6–2
View of the North Façade of the AOH Building, Facing West
The SDIA Airport Development Plan Project
Plate 3.3.6–3
View of the South Façade of the AOH Building, Facing Northwest
The SDIA Airport Development Plan Project
Plate 3.3.6–4
View of the West Façade of the AOH Building, Facing East
The SDIA Airport Development Plan Project
Plate 3.3.6–5

View of the Overhead Tracks on the West Façade of the AOH Building Extending North, Facing East

The SDIA Airport Development Plan Project
Plate 3.3.6–6

View of the Overhead Tracks on the West Façade of the AOH Building Extending South, Facing East

The SDIA Airport Development Plan Project
City of San Diego Modernism Context Statement

In October of 2007, the City of San Diego developed and implemented the Modernism Context Statement (City of San Diego 2007). The stated purpose of the Modernism Context Statement is to “assist in the identification, evaluation and preservation of significant historic buildings, districts, sites, and structures associated with the Modernism movement in San Diego from 1935 to 1970” and was created to better understand “Modern era resources and the types of resources that are significant to the history and development of San Diego.” Although the AOH building was constructed between 1962 and 1964, it is not representative of any form of Modernist architecture as is defined in the Modernism Context Statement (City of San Diego 2007). The building was instead designed as a simple, unadorned, utilitarian airport hangar with no stylistic or identifying elements.

Integrity Evaluation

When evaluating a historic resource, integrity is the authenticity of the resource’s physical identity clearly indicated by the retention of characteristics that existed during its period of significance. It is important to note that integrity is not the same as condition. Integrity directly relates to the presence or absence of historic materials and character-defining features, while condition relates to the relative state of physical deterioration of the resource. In most instances, integrity is more relevant to the significance of a resource than condition; however, if a resource is in such poor condition that original materials and features may no longer be salvageable, then the resource’s integrity may be adversely impacted.

In order to assess each aspect of integrity when evaluating the AOH building, the following steps were taken, as recommended by Milbrooke et al. (1998):

1. **Location** is the place where a resource was constructed or where an event occurred.

 Integrity of location was assessed by reviewing historic records and aerial photographs in order to determine if the building had always existed at its present location or if it had been moved or rebuilt. The AOH building has not been moved since its date of construction, and therefore, retains integrity of location.

2. **Design** results from intentional decisions made during the conception and planning of a resource. Design includes form, plan, space, structure, and style of a property.

 Integrity of design was assessed by evaluating the spatial arrangement of the building and any unique architectural features present. No known modifications have been made to the AOH building since its completion between 1962 and 1964. Because this building reflects its original design in form, plan, space, structure, and style, it retains integrity of design.
3. **Setting** applies to a physical environment, the character of a resource’s location, and a resource’s relationship to the surrounding area.

Integrity of setting was assessed by inspecting the elements of the property, which included topographic features, open space, views, landscapes, vegetation, man-made features, and relationships between buildings and other features. The setting of the AOH building has not significantly changed since its construction between 1962 and 1964. By that time, the airport has already been heavily developed with parking lots and other industrial buildings, just as it is today. While the setting has evolved over time with the presence of newer buildings and building arrangements, the overall setting has not changed from that of an airport. Therefore, the AOH building retains integrity of setting.

4. **Materials** comprise the physical elements combined or deposited in a particular pattern or configuration to form a property.

Integrity of materials was assessed by determining the presence or absence of original building materials, as well as the possible introduction of materials, which may have altered the architectural design of the building. No known modifications have been made to the AOH building since its construction between 1962 and 1964 and it maintains its original building materials. Therefore, the AOH building retains integrity of materials.

5. **Workmanship** consists of the physical evidence of crafts employed by a particular culture, people, or artisan, which includes traditional, vernacular, and high styles.

Integrity of workmanship was assessed by evaluating the quality of the architectural features present in the building. Because no changes are known to have been made to the AOH building, it retains integrity of workmanship.

6. **Feeling** relies upon present physical features of a property to convey and evoke an aesthetic or historic sense of past time and place.

Integrity of feeling was assessed by evaluating whether or not the resource’s features, in combination with its setting, conveyed an aesthetic sense of the property when it was completed between 1962 and 1964. Because the AOH building still retains all other aspects of integrity, it also retains integrity of feeling.
7. **Association** directly links a property with a historic event, activity, or person of past time and place, and requires the presence of physical features to convey the property’s character.

Historical research revealed that no important events or individuals are closely associated with the AOH building, and therefore, it never possessed integrity of association.

NRHP/CRHR Evaluation

In order for a historic resource to be considered eligible for listing on the NRHP or the CRHR, it must be determined significant at the local, state, or national level under one or more of the following criteria:

- **NRHP/CRHR Criterion A/1:**

 It is associated with events that have made a significant contribution to the broad patterns of history.

Archival research revealed that President Lyndon Johnson ended a four-county southern California tour with an appearance at the AOH building on October 28, 1964 (*San Diego Union* 1964). On November 7, 1966, the eve of Reagan’s successful election for state governor against Democrat Pat Brown, the gubernatorial rally took place at the AOH building. The event attracted 250 spectators and was part of a day-long “prop-stop” tour of the state. While the appearance of President Johnson and Reagan’s election as governor of California are notable historic developments, the AOH building was not a significant contributor to these particular events. The speeches and rallies that took place at the hangar were not the first or the last of President Johnson’s or Reagan’s political rallies.

Other than those two political events in the 1960s, the building has functioned as an air hangar facility that is not a significant contributor to local, state, or national history. Air Oasis was a small commuter airline and flight school that offered daily flights to Los Angeles, Long Beach, and Oceanside (*San Diego Union* 1962b), and also operated as a small flight school for private license pilots (*San Diego Union* 1961b). This airline, however, was not a significant contributor to local aviation history. Furthermore, by the early 1960s, airplane hangars were not a rarity at airports. Therefore, the AOH building is not significant under Criterion A/1.
• **NRHP/CRHR Criterion B/2:**

 It is associated with the lives of persons important in our past.

No single person is specifically associated with the AOH building. While President Johnson and then-prospective-governor Ronald Reagan both spoke at the hangar in the 1960s, the building itself did not play a significant role in either event. Both Johnson and Reagan spoke at a large number of venues across the United States, and their appearances at the AOH building did not significantly contribute to their careers. Further, the AOH building was not used as a home, workshop, or studio that could be associated with their professional lives. Therefore, the AOH is not significant under Criterion B/2.

• **NRHP/CRHR Criterion C/3:**

 It embodies the distinctive characteristics of a type, period, region, or method of construction; represents the work of an important creative individual; or possesses high artistic values.

The AOH building was constructed as an aircraft storage facility. The building is a simple, unadorned, utilitarian building that does not possess any distinctive characteristics of a specific style, period, region, or method of construction. Furthermore, the building was not designed or constructed by an important creative individual, nor does it possess high artistic values. Therefore, the AOH building is not significant under Criterion C/3.

• **NRHP/CRHR Criterion D/4:**

 It has yielded, or may be likely to yield, information important in prehistory or history.

The AOH building does not have the potential to yield any additional information important to local, state, or national history, and therefore, is not significant under Criterion D/4.

Conclusion

The AOH building was constructed as a utilitarian airplane hangar between 1962 and 1964. Although the building retains six out of seven aspects of original integrity, it is not a good example of a specific type, method, or period of construction, nor is it representative of the work of a creative individual. In addition, the building is not associated with any significant persons or events, nor would further study yield any additional information about the building itself or the overall history of airplane storage hangars. Therefore, the AOH building is not significant under any NRHP or CRHR criteria and no adverse effect would result from its demolition.
3.3.7 Site P-37-028620 – United Airlines Hangar and Terminal Building (Potential Period of Significance 1931 to 1952)

Resource Description

Planning of the United Airlines hangar and terminal (UAHT) building began in January of 1931 when PAT, which was operated by Boeing Air Lines, was given a hangar lease at Lindbergh Field. PAT was to construct a $27,000 hangar (*San Diego Union* 1931c) to house planes used for passenger and mail transport. A building permit for a “hangar and office” was issued that month with work to be completed by the “Auction Company” (*San Diego Union* 1931d). A *San Diego Union* article from February 2, 1931 describes the new building accordingly:

> Sufficient hangar space to accommodate three large transport planes will be provided in the new building. In addition to the hangar space, the building will contain executive offices, rest rooms and repair shops. The structure will be of the Spanish renaissance type, with red tile roofing on the administration section, and will have a long corridor on the south side permitting air travelers to enter or leave planes without departing from the shelter of the passenger depot. (*San Diego Union* 1931e)

Once the new hangar and office space were completed, the existing PAT repair shops and personnel were to be moved from Burbank to San Diego, which would serve as the “southern divisional headquarters of the PAT lines” (*San Diego Union* 1931e).

Construction of the building began on March 3, 1931 on Pacific Highway. The contractor reported in the *San Diego Union* was the “Austin company of California” instead of the “Auction Company,” as had been stated in articles from January of that year (*San Diego Union* 1931d, 1931f). A dedication ceremony commemorating the completion of the new building was held on May 28, 1931. Starting with a 7:30 a.m. flight, the first of the “Daylight Flyer” service from San Diego to Seattle, the day featured “a full program of events … including a public dance in the new P.A.T. hangar” (*San Diego Union* 1931g). The new building featured a hangar, a passenger corridor on the north side of the hangar, and an attached office with restrooms, ticket offices, and a waiting room.

Four days after the ceremony, it was announced that PAT, National Air Transport, Boeing Air Transport, and Varney Airlines would be consolidated and designated as divisions of United Airlines (*San Diego Union* 1931b). The hangar and terminal building was then “used by United Airlines as its terminal when San Diego was United’s hub during the early years of passenger aviation” (Van Wormer and Robbins-Wade 2006) (Plate 3.3.7–1 and Figure 3.3.7–1). Prior to the construction of the UAHT building, the airport did not have a ticket office, as between 1929 and 1931, a square pilot house from a tugboat located to the west of the Airtech hangar served as a ticket booth (Van Wormer and Robbins-Wade 2006).
In addition to the UAHT building, the Ryan Aeronautical administration building was also later used as a terminal building for air traffic. As the amount of air travel traffic began to increase, these two buildings were no longer large enough to be efficient, and in response, the Ryan Aeronautical administration building was expanded into a larger airport terminal in 1951. This expansion included using one building as the ticket office and waiting room for three airlines (the 1932 administration building) and another as an office building (the Friedkin School building to the south).

As part of this new airport plan, the UAHT building and the Nelson-Kelley (previously Air Tech) hangar were to be relocated to the south side of the airport along Harbor Drive for “non-scheduled and air cargo lines and private flying activities” (San Diego Union 1949). The terminal portion and the passenger corridor and wing wall on the UAHT building were removed and the hangar portion was moved to its current location at 2340 Stillwater Road “… for use as an air freight terminal” (San Diego Union 1949) (Plate 3.3.7–2).
Figure 3.3.7–1
1946 Sanborn Map
The SDIA Airport Development Plan Project
Plate 3.3.7–2
Circa 1951 Aerial Photograph of the Airport Buildings on Pacific Highway
The SDIA Airport Development Plan Project
In 2005, the UAHT building was recorded as Site P-37-028620 with a period of significance of 1931 to 1940 (Van Wormer 2005). The building was evaluated as significant under NRHP Criterion A “due to the fact that it was the second building constructed at the airport and was used by United Airlines as its hangar and terminal when San Diego was United’s hub during the early years of passenger aviation” (Van Wormer and Robbins-Wade 2006). The building was also evaluated as significant under NRHP Criterion C as an example of “early aircraft hangar and terminal construction typical of the late 1920s and early 1930s” (Van Wormer and Robbins-Wade 2006). When recorded, the building was reported to have undergone “very little modification from its original design and retains excellent integrity of design, workmanship, and materials” (Van Wormer and Robbins-Wade 2006).

In 2005, when P-37-028620 was recorded, however, the overall integrity of the building had already been previously impacted due to the building’s relocation and the removal of the passenger corridor and terminal in 1952. Currently, only the hangar portion of the building remains, which shows evidence of additional post-1952 modifications. Planned for demolition in 2022, the UAHT building meets the 50-year minimum age threshold for historic resources as determined by CEQA and NHPA guidelines, and because Van Wormer and Robbins-Wade’s 2006 evaluation of the building is deemed incomplete, a CRHR/NRHP evaluation of the building is provided herein. A site plan has been provided in Figure 3.3.7–2 that color-codes all original and modified portions of the building.

In 2005, Van Wormer recorded the UAHT building as being representative of an “Industrial – commercial aircraft hangar” with “modest Art Deco pillars at corners.” However, the current evaluation found that the original UAHT building is more representative of a mixture of the Spanish Revival and Modernistic architectural styles. When constructed in 1931, the UAHT building consisted of an approximately 5,625-square foot hangar, a covered passenger corridor, and a rectangular terminal. The hangar portion of the UAHT building was moved to its current location at 2340 Stillwater Road in 1952 (Morn 1952). At that time, it was rotated approximately 180 degrees so that the large hangar doors now face north rather than south. The following were removed from the building: the wing wall and passenger loading corridor; the terminal; and the decorative moulding around the entry door. After its relocation, the building functioned as an aircraft maintenance hangar. Currently, the building serves as a storage and maintenance facility for Menzies Aviation. The remaining hangar portion currently appears much as it did when constructed in 1931 (Plate 3.3.7–3).
Figure 3.3.7–2
Site Plan for the UAHT Building
Site P-37-028620
The SDIA Airport Development Plan Project

Legend
- 1931 Original Building
- Terminal Removed in 1952, Windows and Doors Added Post-1952
- Passenger Corridor and Wing Wall Removed in 1952
- Entry Door Replaced and Decorative Moulding
- Above Door Removed Post-1952
The hangar was constructed with a steel frame and wood and steel trusses that form a low, flat, pyramidal roof (Plate 3.3.7–4). The roof itself was constructed using wood planks (Plate 3.3.7–5) covered in an asphalt roofing material. Square, stepped, concrete, Art Deco-style pillars clad in stucco support the four corners of the hangar building. The pillars are connected on the north, south, and east façades via a thick, stucco-clad architrave with stepped horizontal grooves at the cornice line. The stepped horizontal grooves on the west façade are interrupted in the center by a curved parapet. The north façade of the building exhibits 12 multi-paned, steel-framed, sliding hangar doors. The doors are installed on tracks (upper and lower) that allow all of the doors to slide to the inside of the west façade so as to all be open at the same time (Plates 3.3.7–6 and 3.3.7–7).

The east façade of the building exhibits fixed-pane, steel-framed windows (Plate 3.3.7–8), which are the same size and shape as the panes present in the hangar doors on the north façade. Below the windows on the east façade is an approximately two-foot-tall brick wall with concrete coping between the wall and windows. There is also a single, unadorned, solid metal entry door on the east façade (Plate 3.3.7–9). This door is not original and was likely replaced around the time that the building was relocated in 1952. As can be seen in Plate 3.3.7–3, the original entry door on what is now the current east façade exhibited decorative moulding.
Plate 3.3.7-4

View of the North Façade of the UAHT Building, Facing South

The SDIA Airport Development Plan Project
Plate 3.3.7-5
View of the Wood Plank Ceiling of the UAHT Building, Facing Southeast
The SDIA Airport Development Plan Project
Plate 3.3.7–6
View of the Tracks for the Sliding Hangar Doors on the UAHT Building, Facing Southeast
The SDIA Airport Development Plan Project
Plate 3.3.7–7
View of the Tracks for the Sliding Hangar Doors
on the UAHT Building, Facing Northeast
The SDIA Airport Development Plan Project
Plate 3.3.7–8
View of the East Façade of the UAHT Building, Facing North
The SDIA Airport Development Plan Project
Plate 3.3.7–9
View of the Post-1952 Entry Door on the East
Façade of the UAHT Building, Facing Southwest
The SDIA Airport Development Plan Project
When completed in 1931, the UAHT building possessed a covered passenger corridor on what is currently the south façade (Plates 3.3.7–10 and 3.3.7–11). The passenger corridor resembled a Spanish Revival-style, full-length porch, which extended the entire length of the building and exhibited 10 support posts. The corridor was accented on what is currently the east side by an arcaded, stucco-clad wing wall with a stepped pillar that matched those on the four corners of the building. A description could not be located of the passenger corridor roof material and historic photographs do not show the corridor clearly enough to determine what materials may have been used in its construction. The wall separating the corridor from the interior of the hangar was constructed of brick, as can be seen in a current photograph of the south façade of the building (Plate 3.3.7–12). Above the brick wall is a band of original steel-framed, fixed-pane and horizontal pivot windows (see Plate 3.3.7–12).

Before it was removed, the terminal was attached to what is currently the west façade of the UAHT building (Plate 3.3.7–13). The attached terminal building was rectangular, clad in stucco, with a flat, parapeted roof and casement-style windows. The two eastern corners of the attached terminal exhibited square, stepped pillars that matched those on the four corners of the hangar. The wall separating the hangar from the terminal was solid brick, except for a large doorway near the northern end and a smaller doorway toward the center of what is currently the west façade of the UAHT building (Plate 3.3.7–14).
Plate 3.3.7–12

View of the South Façade of the UAHT Building, Facing Northwest

The SDIA Airport Development Plan Project
Plate 3.3.7–13: Circa 1931 to 1941 photograph of the UAHT building showing the terminal attached to the right side.
(Photograph courtesy of the San Diego Air and Space Museum)

Plate 3.3.7–14: Circa 1931 to 1941 photograph of the interior of the UAHT building showing the attached terminal and two entrance doors on the right side.
(Photograph courtesy of the San Diego Air and Space Museum)
What is currently the west façade of the hangar exhibits a small, projecting, curved parapet in the center of the wall (Plate 3.3.7–15). Although no historic photographs of this façade could be located, it is likely that the curved parapet is original to the building. After the building was moved to its current location, five doors and seven windows were installed on what is currently the west façade. Five of the windows are metal-framed and casement-style (Plate 3.3.7–16) and two are aluminum-framed sliders (Plate 3.3.7–17). The casement windows may have been repurposed from the terminal when it was removed from the hangar, as they appear similar in size and style to those visible in Plates 3.3.7–13 and 3.3.7–14. The doors that were installed post-1952 are made from solid, industrial-style metal. It is unknown if they were repurposed.

Architectural Style

As stated previously, the UAHT building was constructed in 1931 in a mixture of Spanish Revival and Modernistic architectural styles. The Spanish Revival style was common between 1915 and 1940, predominantly in the southwestern states and particularly in California. Spanish Revival-style buildings use decorative details that are broadly borrowed from historic Spanish architecture. The style was introduced at the Panama-California Exposition held in San Diego in 1915 (McAlester 2015). Prior to its relocation in 1952, the UAHT building possessed several Spanish Revival-style elements, including: the arcaded wing wall on the passenger corridor; the flat, parapeted roof on the attached terminal; the casement windows on the terminal; the carved moulding above the door on what is currently the east façade; and the shed-style roof on the passenger corridor. However, all of these elements were removed when the building was relocated in 1952.

There are two subtypes of the Modernistic style: Art Moderne and Art Deco (McAlester 2015). Art Moderne designs often feature smooth features, curved corners, and a horizontal emphasis, while Art Deco designs often feature zig-zag and chevron motifs with an emphasis upon verticality. The Modernistic style was common in public and commercial buildings between 1920 and 1940. Most building types often exhibit a combination of the streamlined Art Moderne and Art Deco influences. When constructed in 1931, the UAHT building featured elements of both the Art Moderne and Art Deco subtypes, including: a smooth stucco wall surface; square, stepped, concrete, pillars clad in stucco; and horizontal grooves along the roofline of the hangar. All of these elements were retained after the building’s relocation in 1952; however, additional Modernistic elements that were present on the terminal were lost when that portion of the building was removed in 1952.
Plate 3.3.7–15

View of the West Façade of the UAHT Building, Facing East

The SDIA Airport Development Plan Project
Plate 3.3.7–16
View of a Metal-Framed, Casement-Style Window on the West Façade of the UAHT Building, Facing East
The SDIA Airport Development Plan Project
Plate 3.3.7-17

View of the Two Aluminum-Framed Sliding Windows on the West Façade of the UAHT Building, Facing East

The SDIA Airport Development Plan Project
Integrity Evaluation

When evaluating a historic resource, integrity is the authenticity of the resource’s physical identity clearly indicated by the retention of characteristics that existed during its period of significance. It is important to note that integrity is not the same as condition. Integrity directly relates to the presence or absence of historic materials and character-defining features, while condition relates to the relative state of physical deterioration of the resource. In most instances, integrity is more relevant to the significance of a resource than condition; however, if a resource is in such poor condition that original materials and features may no longer be salvageable, then the resource’s integrity may be adversely impacted.

In order to assess each aspect of integrity when evaluating the UAHT building, the following steps were taken, as recommended by Milbrooke et al. (1998):

1. **Location** is the place where a resource was constructed or where an event occurred.

 Integrity of location was assessed by reviewing historic records and aerial photographs in order to determine if the building has always existed at its present location or if it has been moved or rebuilt. The UAHT building was originally constructed on Pacific Highway, northeast of the runway. After the Ryan Air Administration building was expanded into an airport terminal in 1951, the hangar was moved to its current location at 2340 Stillwater Road in 1952 and the attached terminal was removed. Therefore, the UAHT building does not retain integrity of location.

2. **Design** results from intentional decisions made during the conception and planning of a resource. Design includes form, plan, space, structure, and style of a property.

 Integrity of design was assessed by evaluating the spatial arrangement of the building and any unique architectural features present. The original Spanish Revival/Modernistic design of the UAHT building has been significantly altered since its construction in 1931. When the building was relocated to its current location in 1952, numerous alterations were made, including: removal of the terminal; removal of the passenger corridor and wing wall; and installation of new windows and doors. Removal of the passenger corridor, wing wall, and terminal eliminated all but one (curved parapet) of the Spanish Revival-style elements that the building originally possessed. Although the hangar still exhibits its original sliding hangar doors and wood and steel roof trusses, the overall design of the UAHT building was negatively impacted by the removal of the original elements. Because the UAHT building is no longer representative of its original design, form, plan, space, structure, or style, it does not retain integrity of design.
3. **Setting** applies to a physical environment, the character of a resource’s location, and a resource’s relationship to the surrounding area.

Integrity of setting was assessed by inspecting the elements of the property, which included topographic features, open space, views, landscapes, vegetation, man-made features, and relationships between buildings and other features. When originally constructed in 1931, the UAHT building was the second building constructed at Lindbergh Field. As the airport has been significantly expanded since that time, and the hangar was relocated in 1952, the setting of the building has significantly changed. Subsequent development of the airport has included numerous parking lots, large terminal buildings, and other air support structures. As a result, the UAHT building does not retain integrity of setting.

4. **Materials** comprise the physical elements combined or deposited in a particular pattern or configuration to form a property.

Integrity of materials was assessed by determining the presence or absence of original building materials, as well as the possible introduction of materials, which may have altered the architectural design of the building. When relocated in 1952, original building materials were removed and newer materials were introduced, which negatively impacted the UAHT building’s integrity of materials. The terminal was removed from what is currently the west façade of the building, the passenger corridor and wing wall were removed from what is currently the south façade of the building, and windows and doors were added/modified on the current west and east façades of the building. Due to the modifications made during and after the 1952 relocation, the UAHT building does not retain integrity of materials.

5. **Workmanship** consists of the physical evidence of crafts employed by a particular culture, people, or artisan, which includes traditional, vernacular, and high styles.

Integrity of workmanship was assessed by evaluating the quality of the architectural features present in the building. When constructed in 1931, the UAHT building was a large, two-story hangar with an attached single-story terminal and a covered passenger corridor. The extensive alterations made to the UAHT building have impacted the original integrity of workmanship. While the hangar is still extant, when it was relocated in 1952, the entire terminal and passenger corridor were removed and windows were cut into the brick wall on what is currently the west façade of the building. These modifications represent multiple builders and varying levels of workmanship. In addition, the original workmanship associated with the terminal and
passenger corridor portions of the building was lost with their removal. Therefore, the
UAHT building does not retain integrity of workmanship.

6. **Feeling** relies upon present physical features of a property to convey and evoke an
aesthetic or historic sense of past time and place.

Integrity of feeling was assessed by evaluating whether or not the resource’s features,
in combination with its setting, conveyed an aesthetic sense of the property around
1931 when the UAHT building was constructed. The building did not undergo any
modifications until it was relocated in 1952, which negatively impacted its integrity of
feeling. Because the building does not retain integrity of location, setting, design,
materials, or workmanship, it also does not retain integrity of feeling. Removal of the
terminal and passenger corridor changed the building’s original function from a hangar
and terminal used by the general public to an aircraft maintenance hangar. Installation
of windows and doors post-1952 on what are currently the east and west façades also
altered the building’s aesthetics. Because the original design and function of the
building and its original materials have been significantly altered, the UAHT building
does not retain integrity of feeling.

7. **Association** directly links a property with a historic event, activity, or person of past
time and place, and requires the presence of physical features to convey the property’s
character.

Integrity of association was assessed by evaluating whether the building was ever
directly associated with important events or individuals. Completed in 1931, the
UAHT building was the second building constructed at Lindbergh Field. While the
portions of the building associated with its use as a terminal have been removed
(terminal building and passenger corridor), the remaining hangar portion of the
building is currently the oldest structure still extant within the airport grounds. Despite
having been relocated in 1952, the hangar portion of the building is still representative
of early 1930s hangar buildings. Therefore, the UAHT building does retain integrity
of association.

NRHP/CRHR Evaluation

In order for a historic resource to be considered eligible for listing on the NRHP or the
CRHR, it must be determined significant at the local, state, or national level under one or more
of the following criteria:
• NRHP/CRHR Criterion A/1:

It is associated with events that have made a significant contribution to the broad patterns of history.

The UAHT building was originally constructed for PAT during the establishment of Lindbergh Field. In 1931, the same year that the UAHT building was completed, PAT was purchased by United Airlines. When constructed, the building was the second building ever constructed at Lindbergh Field. However, it was moved to its current location in 1952 once the Ryan Air Administration building on Pacific Highway was expanded into an airport terminal in 1951. Normally, buildings that have been moved are no longer eligible for listing due to a resulting loss of integrity. However, as previously evaluated by Van Wormer and Robbins-Wade (2006), the UAHT building is considered eligible for listing under NRHP/CRHR Criterion A/1 because it is the oldest surviving structure at Lindbergh Field. Although the setting of the airport has changed considerably since 1931, the UAHT building was threatened with destruction at its original location due to the need for parking near the 1951 Ryan Air Administration terminal building. Moving the UAHT building to another location within the airport grounds ensured that the building would remain within an aviation setting. Because the UAHT building is still the oldest surviving structure associated with the “earliest period of development at Lindbergh Field between 1928 and 1933” (Van Wormer and Robbins-Wade 2006), it is significant under Criterion A/1.

• NRHP/CRHR Criterion B/2:

It is associated with the lives of persons important in our past.

No single person can be specifically associated with the UAHT building. The building originally functioned as a hangar and terminal for PAT/United Airlines before it was moved to its current location in 1952 and used solely as an aircraft maintenance hangar. No PAT/United Airlines employees who may have worked at the building are known to have been significant at the local, state, or national level. Therefore, the UAHT building is not significant under Criterion B/2.

• NRHP/CRHR Criterion C/3:

It embodies the distinctive characteristics of a type, period, region, or method of construction; represents the work of an important creative individual; or possesses high artistic values.

When completed in 1931, the UAHT building possessed both Spanish Revival- and Modernistic-style characteristics. However, modifications made to the building when
it was moved to its current location in 1952 eliminated a majority of the Spanish Revival characteristics it originally exhibited, including: the arcade wing wall and shed-style roof on the passenger corridor; the flat, parapeted roof and casement windows on the terminal; and the carved moulding above the door on what is currently the east façade of the building. The only remaining Spanish Revival element is a curved parapet located on what is currently the west façade of the building. The UAHT building still exhibits Modernistic-style elements, such as: the square, stepped, concrete, Art Deco-style pillars clad in stucco; and the thick, stucco-clad architrave with stepped horizontal grooves at the cornice line. However, original Spanish Revival elements that were present on the terminal, such as the flat roof with a parapet wall and casement windows, and on the passenger corridor, such as the shed-style roof and wing wall, were lost when those portions of the building were removed in 1952.

The UAHT building’s loss of original Spanish Revival and Modernistic architectural elements negatively impacted the building’s integrity of design, materials, workmanship, and feeling. Furthermore, the building does not represent the work of an important creative individual, nor does it possess high artistic values. While Van Wormer and Robbins-Wade (2006) previously stated that the building still reflects “early aircraft hangar and terminal construction typical of the late 1920s and early 1930s,” removal of the terminal and the passenger corridor negatively impacted the original architectural design of the building. Therefore, the UAHT building is not significant under Criterion C/3.

- **NRHP/CRHR Criterion D/4:**
 It has yielded, or may be likely to yield, information important in prehistory or history.

 The UAHT building does not have potential to yield any additional information important to local, state, or national history, and therefore, is not significant under Criterion D/4.

Conclusion

The UAHT building was originally constructed along Pacific Highway in 1931 as a Spanish Revival/Modernistic-style hangar and terminal for PAT/United Airlines until it was moved to its current location in 1952. At that time, the building was rotated approximately 180 degrees and the original passenger corridor and terminal were removed, which also removed the majority of the building’s Spanish Revival characteristics. The building does, however, retain a curved parapet on what is currently its west façade. Currently, the building only exhibits Modernistic-style elements, such as the square, stepped, concrete, Art Deco-style pillars clad in stucco and the thick, stucco-clad architrave with stepped horizontal grooves at the cornice line.
Despite having been relocated, the UAHT building is still the oldest surviving building within the airport, and as such, is associated with the “earliest period of development at Lindbergh Field between 1928 and 1933” (Van Wormer and Robbins-Wade 2006). Therefore, as previously evaluated by Van Wormer and Robbins-Wade (2006), the UAHT building still meets National Register Criteria Consideration B, which allows moved properties that are significant as a surviving property associated with historic events to be considered eligible for the NRHP. Since the building qualifies for National Register Criteria Consideration B, and is significant under NRHP/CRHR Criterion A/1 for its association with the early development of Lindbergh Field, demolition of the UAHT building will result in an adverse effect. It is therefore recommended that HABS/HAER documentation of the building be conducted prior to its demolition.
3.3.8 Site P-37-036762 – Jet Engine Overhaul Building (Potential Period of Significance 1956 to 1961)

The jet engine overhaul (JEO) building was originally constructed between 1956 and 1961, based upon Sanborn maps and aerial photographs. The building was constructed east of Winship Lane and immediately west of Building 156 within the Ryan Aeronautical Company Complex (URS Corporation 2009b). The JEO building shares aesthetic and functional similarities with Buildings 131, 152, and 156 within the Ryan Aeronautical Company Complex, such as the three-barreled roof, exterior stucco cladding, parapeted walls, steel-framed windows, and metal doors with square glass insets. However, the JEO building was not identified in the previous URS Corporation cultural resource assessment (2009b) as being part of the Ryan Aeronautical Company Historic District, nor was it included as part of the Ryan Aeronautical Company Complex on the 1956 Sanborn Map (Figure 3.3.8–1).

Despite not being recorded within the Ryan Aeronautical Company Complex, it is likely that the JEO building shared the 2701 Harbor Drive address with the other Ryan Aeronautical Company buildings, since no addresses are listed on Winship Lane until after the 1970s. In 1957, the San Diego Union announced that the Ryan Aeronautical Company had received a permit to construct “a large warehouse” at 2701 Harbor Drive. It is possible that the JEO building is that warehouse; however, this could not be verified since the warehouse was not described in the article (San Diego Union 1957).

The JEO building is visible on a 1961 aerial photograph of the airport (Plate 3.3.8–1), and although its original function is unknown, based upon the 1966 site plan for the PSA AMF building (see Section 3.3.3), which is located to the southwest, the JEO building likely functioned as a jet engine overhaul facility in the 1960s (see Figure 3.3.3–1). The building is currently owned and occupied by the SDCRAA as a procurement warehouse. A site plan has been provided in Figure 3.3.8–2 that color-codes all original and modified portions of the building.

The JEO building was originally designed as a simple, unadorned, utilitarian, industrial-style building. The building exhibits no stylistic elements and is not representative of any particular architectural style. The JEO building currently exhibits an approximately 150-by-200-foot rectangular footprint, has a three-barreled roof, and is entirely clad in stucco. The west, south, and east façades exhibit a parapet wall at the roofline; the north façade has a flat roofline with no parapet.
Figure 3.3.8–1
1956 Sanborn Map With
Plotted Location of the JEO Building
The SDIA Airport Development Plan Project
Plate 3.3.8-1
1961 Aerial Photograph of Lindbergh Field
Showing the JEO Building Highlighted in Red
The SDIA Airport Development Plan Project

(Photograph courtesy of the San Diego History Center)
Figure 3.3.8–2
Site Plan for the JEO Building
Site P-37-036762
The SDIA Airport Development Plan Project
The primary (west) façade features two sets of metal double doors with a single square window in each door, two solid metal entry doors, and a roll-top loading dock door on the first story, and two horizontal bands of multi-pane, steel-framed windows on the second story (Plate 3.3.8–2). A metal awning is present over the southernmost set of double doors.

The south façade features one set of metal double doors with a single square window in each door on the first story and one horizontal band of multi-pane, steel-framed windows on the second story. Two signs are located on the second story near the western corner of the south façade. The signs have arrows that point toward the east façade and read “SDCRAA Warehouse” and “Paint Shop” (Plate 3.3.8–3).

The east façade features a non-original, aluminum-framed glass door surrounded by five aluminum-framed windows (Plate 3.3.8–4), a single-hung, steel-framed window, and one roll-top loading dock door on the first story, and two horizontal bands of multi-pane, steel-framed windows on the second story (Plate 3.3.8–5).

The north façade only features one horizontal band of multi-pane, steel-framed windows that stretches almost the whole length of the second story (Plate 3.3.8–6). All horizontal bands of windows on all four façades have been covered in a black film. The building also appears to have been restuccoed and new metal trim and gutters were added to the roofline at unknown dates.

The three-barreled roof, exterior stucco cladding, parapeted walls, steel-framed windows, and metal doors with square glass insets are all features that the JEO building shares with Buildings 131, 152, and 156, which were recorded within the Ryan Aeronautical Company Historic District and evaluated as eligible for NRHP/CRHR listing (URS Corporation 2009b). The Ryan Aeronautical Company Historic District, however, was demolished in 2010. Were the district still extant, the JEO building would likely also be significant as a contributor since it is likely that it was constructed for use by the Ryan Aeronautical Company. Because the JEO building is not individually eligible for listing under any CRHR or NRHP criteria (see evaluation below), and the Ryan Aeronautical Company Historic District was demolished in 2010, the JEO building cannot be considered a contributing element of the district.

Integrity Evaluation

When evaluating a historic resource, integrity is the authenticity of the resource’s physical identity clearly indicated by the retention of characteristics that existed during its period of significance. It is important to note that integrity is not the same as condition. Integrity directly relates to the presence or absence of historic materials and character-defining features, while condition relates to the relative state of physical deterioration of the resource. In most instances, integrity is more relevant to the significance of a resource than condition; however, if a resource is in such poor condition that original materials and features may no longer be salvageable, then the resource’s integrity may be adversely impacted.
Plate 3.3.8–2

View of the Primary (West) Façade of the JEO Building, Facing North

The SDIA Airport Development Plan Project
Plate 3.3.8–3
View of the South Façade of the JEO Building Showing Attached Signage, Facing East
The SDIA Airport Development Plan Project
Plate 3.3.8-4

View of the East Façade of the JEO Building Showing a Non-Original, Aluminum-Framed Glass Door, Facing West

The SDIA Airport Development Plan Project
Plate 3.3.8–5
View of the East Façade of the JEO Building
Showing a Roll-Top Loading Dock Door, Facing North
The SDIA Airport Development Plan Project
Plate 3.3.8–6

View of the North Façade of the JEO Building Showing the Horizontal Band of Steel-Framed Windows, Facing Southeast

The SDIA Airport Development Plan Project
In order to assess each aspect of integrity when evaluating the JEO building, the following steps were taken, as recommended by Milbrooke et al. (1998):

1. **Location** is the place where a resource was constructed or where an event occurred.

 Integrity of location was assessed by reviewing historic records and aerial photographs in order to determine if the building had always existed at its present location or if it had been moved or rebuilt. The JEO building has not been moved since its construction between 1956 and 1961, and therefore, retains integrity of location.

2. **Design** results from intentional decisions made during the conception and planning of a resource. Design includes form, plan, space, structure, and style of a property.

 Integrity of design was assessed by evaluating the spatial arrangement of the building and any unique architectural features. The design of the JEO building has not been significantly altered; however, the current historic survey revealed several possible alterations. The door surrounded by glass panes on the east façade does not appear to be original. The windows and door have newer aluminum frames, which is a departure from the heavier, steel-framed, multi-pane windows found throughout the rest of the building. The horizontal bands of steel-framed windows on all four façades have also been altered. These windows are now covered in an opaque black film, which is probably not original. These noted modifications, however, have not significantly altered the design of the JEO building. The replacement (or new) door on the east façade and the removable black film on the horizontal bands of windows on all four façades have not altered the form, plan, space, structure, or style of the building. Because the JEO building reflects its original design, it retains integrity of design.

3. **Setting** applies to a physical environment, the character of a resource’s location, and a resource’s relationship to the surrounding area.

 Integrity of setting was assessed by inspecting the elements of the property, which included topographic features, open space, views, landscapes, vegetation, man-made features, and relationships between buildings and other features. The setting of the JEO building has significantly changed since its construction between 1956 and 1961. At that time, it is possible that the JEO building was part of the Ryan Aeronautical Company Complex. Even though the JEO building was not recorded within the complex and was not identified in the previous URS Corporation cultural resource assessment (2009b) as being part of the Ryan Aeronautical Company Historic District, it likely shared the 2701 Harbor Drive address with the other Ryan Aeronautical
Company buildings, since no addresses are listed on Winship Lane until after the 1970s. Regardless, with the demolition of the Ryan Aeronautical Company Historic District in 2010, the original industrial setting of the JEO building disappeared. Therefore, the JEO building does not retain integrity of setting.

4. **Materials** comprise the physical elements combined or deposited in a particular pattern or configuration to form a property.

Integrity of materials was assessed by determining the presence or absence of original building materials, as well as the possible introduction of materials, which may have altered the architectural design of the building. The JEO building has not been significantly altered, with the exception of the east façade door addition/replacement and the adhesive applied to the original horizontal bands of windows on all four façades. Regardless, the building still retains all original materials and no additional documented changes have been made. Therefore, the JEO building retains integrity of materials.

5. **Workmanship** consists of the physical evidence of crafts employed by a particular culture, people, or artisan, which includes traditional, vernacular, and high styles.

Integrity of workmanship was assessed by evaluating the quality of the architectural features present in the building. Because there is no evidence indicating that the JEO building has undergone any major alterations, it retains integrity of workmanship.

6. **Feeling** relies upon present physical features of a property to convey and evoke an aesthetic or historic sense of past time and place.

Integrity of feeling was assessed by evaluating whether or not the resource’s features, in combination with its setting, conveyed an aesthetic sense of the property between 1956 and 1961 when the JEO building was constructed. The original physical features of the JEO building are still present; however, the building no longer retains integrity of setting. In addition, the building is no longer used as a jet engine overhaul facility and instead functions as a procurement warehouse for the SDCRAA. Because the JEO building no longer evokes an aesthetic or historic sense of the period between 1956 and 1961, it does not retain integrity of feeling.

7. **Association** directly links a property with a historic event, activity, or person of past time and place, and requires the presence of physical features to convey the property’s character.
Historic research revealed that no important events or individuals are closely associated with the JEO building. The building was constructed between 1956 and 1961, likely as a warehouse for the Ryan Aeronautical Company, and possibly as part of the Ryan Aeronautical Company Complex, which had already been established for over 10 years. Although it is possible that the JEO building was originally part of the Ryan Aeronautical Company Complex, it was not included as part of the Ryan Aeronautical Company Historic District (URS Corporation 2009b). No historic events, activities, or persons are known to be associated with the JEO building, and therefore, it never possessed integrity of association.

NRHP/CRHR Evaluation

In order for a historic resource to be considered eligible for listing on the NRHP or the CRHR, it must be determined significant at the local, state, or national level under one or more of the following criteria:

- **NRHP/CRHR Criterion A/1:**

 It is associated with events that have made a significant contribution to the broad patterns of history.

 Archival research revealed that no significant events have taken place at the JEO building. The building was likely originally constructed for use by the Ryan Aeronautical Company as a warehouse, and in the 1960s, the building functioned as a jet engine overhaul facility. Currently, the building serves as a storage warehouse for the SDCRAA. None of the building’s current or previous functions, however, are significant on the local, state, or national level. Although it is possible that the JEO building was originally part of the Ryan Aeronautical Company Complex, it was not included as part of the Ryan Aeronautical Company Historic District (URS Corporation 2009b), nor was it included as part of the Ryan Aeronautical Company Complex on the 1956 Sanborn Map. Regardless, because the Ryan Aeronautical Company Historic District was demolished in 2010, the JEO building cannot be considered a contributing element to the district, nor was the building influential in the establishment of the Ryan Aeronautical Company. Because the JEO building is not associated with any events that have made a significant contribution to the broad patterns of history, it is not significant under Criterion A/1.

- **NRHP/CRHR Criterion B/2:**

 It is associated with the lives of persons important in our past.
No single person is known to have been associated with the JEO building. Because no persons important in local, state, or national history could be associated with the JEO building, it is not significant under Criterion B/2.

- **NRHP/CRHR Criterion C/3:**

 It embodies the distinctive characteristics of a type, period, region, or method of construction; represents the work of an important creative individual; or possesses high artistic values.

 The JEO building is a simple, utilitarian, industrial-style building. The three-barrel roof, exterior stucco cladding, parapeted walls, steel-framed windows, and metal doors with square glass insets are all features that the building shares with Buildings 131, 152, and 156 within the Ryan Aeronautical Company Historic District. Although URS Corporation determined that Buildings 131, 152, and 156 were eligible for listing under CRHR and NRHP criteria in 2009, none of the buildings were evaluated as individually significant for their architectural characteristics or construction methods. The architectural features that the JEO building shares with Buildings 131, 152, and 156 are only representative of utilitarian, industrial-style buildings; they are not representative of a particular type, period, region, or method of construction, and they do not possess high artistic value. For this reason, the JEO building is not significant under Criterion C/3.

- **NRHP/CRHR Criterion D/4:**

 It has yielded, or may be likely to yield, information important in prehistory or history.

 The JEO building does not have potential to yield any additional information important to local, state, or national history, and is therefore not significant under Criterion D/4.

Conclusion

The JEO building was constructed as an industrial-style building between 1956 and 1961. Although the building retains four out of seven aspects of original integrity, it is not a good example of a specific type, method, or period of construction, nor is it representative of the work of a creative individual. In addition, the building is not associated with any significant persons or events, nor would further study of the building yield any additional information about the history of Lindbergh Field or the Ryan Aeronautical Company.

The JEO building shares architectural features with Buildings 131, 152, and 156 within the Ryan Aeronautical Company Historic District; however, these three buildings were previously evaluated as eligible for the NRHP or the CRHR as elements of the Ryan Aeronautical Company Historic District, not as individually significant buildings (URS Corporation 2009b). Regardless,
in 2010, the Ryan Aeronautical Company Historic District was demolished. Were the district still extant, the JEO building may be significant as a contributor since it is likely that the building was constructed for use by the Ryan Aeronautical Company. However, because the JEO building is not individually eligible for listing under any NRHP or CRHR criteria, and the Ryan Aeronautical Company Historic District is no longer extant, the JEO building cannot be considered a contributing element of the district. Therefore, the JEO building is not significant under any NRHP or CRHR criteria and no adverse effect will result from its demolition.
3.3.9 Site P-37-015548 – Convair Wind Tunnel Building (Potential Period of Significance 1947)

Resource Description

In 1944, Convair (Consolidated Vultee Aircraft Corporation, previously Consolidated Aircraft Corporation) acquired the land at 3050 Pacific Highway, where Claude Ryan had constructed the RSA airplane hangar in 1932 (see Plate 1.2–5). In October of 1944, the RSA hangar building was relocated to the southeastern portion of Lindbergh Field, adjacent to the Ryan Aeronautical Company Complex, in order to make way for the construction of a wind tunnel building (San Diego Union 1944). Although visible on the 1946 Sanborn Map (Figure 3.3.9–1), construction of the $600,000 Convair wind tunnel (CWT) building was ongoing for nearly three years (Plate 3.3.9–1) (San Diego Union 1946) before completion in 1947. Convair began testing operations at the facility in mid-1947, and in 1948, “Convair Wind Tunnel” was painted over the entrance to the building (San Diego Union 1947; San Diego Union 1948) (Plate 3.3.9–2).

Plate 3.3.9–1: View of the CWT building under construction in 1945. (Photograph courtesy of the San Diego Air and Space Museum)
Figure 3.3.9–1
1946 Sanborn Map Showing the CWT Building Still Under Construction (Highlighted in Blue)

The SDIA Airport Development Plan Project
Plate 3.3.9–2
Post-1948 View of the CWT Building
The SDIA Airport Development Plan Project

(Photograph courtesy of the San Diego Air and Space Museum)
A site plan has been provided in Figure 3.3.9–2 that color-codes the original and modified portions of the building. Between 1953 (Plate 3.3.9–3) and 1964 (Plate 3.3.9–4), a three-story, corrugated metal addition was built on the northwest façade of the CWT building, southwest of the power house and transistors required to operate the facility. No other modifications appear to have been made to the exterior of the building.

Plates 3.3.9–3 and 3.3.9–4: 1953 (left) and 1964 (right) aerial photographs of the CWT building (outlined in red). (Photographs courtesy of NETROnline)

The CWT building is still currently being used as a testing facility, which involves producing complete scale models of aircraft or various aircraft parts that are placed inside the tunnel (Plate 3.3.9–5). Air is then passed over the scale models so aspects of lift and drag can be measured. Called a “low speed wind tunnel,” the CWT building was, and still is, capable of generating a maximum wind speed of 270 miles per hour. During testing, this “low speed” air current is propelled (Plate 3.3.9–6) through a wall of boards called turning vanes (Plate 3.3.9–7). The air is pushed into a triangular room before being blasted through a honeycomb wall into an eight-foot-tall, 12-foot-wide, 15-foot-long room. The small room has large windows on either side that allow engineers to view the testing from the adjacent control room (Plate 3.3.9–8). Currently, video camera feeds of the testing sessions are displayed in the control room. The CWT building has been used to test Boeing jetliners, fighter jets, and the Space Shuttle, as well as other various structures and items such as Qualcomm Stadium, camping tents, and cell towers. In 2006, the CWT building was purchased by the San Diego Air and Space Museum and is now known as the San Diego Air and Space Technology Center (Masunaga 2017).
Figure 3.3.9-2
Site Plan for the CWT Building
Site P-37-015548
The SDIA Airport Development Plan Project
Plate 3.3.9–5: The CWT building circa 1955 to 1965.
(Photograph courtesy of the San Diego Air and Space Museum)

Plate 3.3.9–6: CWT building wind propellers at an unknown date.
(Photograph courtesy of the San Diego Air and Space Museum)
Plate 3.3.9–7: CWT building turning vanes in 1945.
(Photograph courtesy of the San Diego Air and Space Museum)

Plate 3.3.9–8: The CWT building control room in 1972.
(Photograph courtesy of the San Diego Air and Space Museum)
In 1996, the CWT building was recorded as part of the General Dynamics Facility Demolition Project (Van Wormer 1996a). As recorded by Van Wormer, the two-story building with a partial basement currently exhibits a rectangular footprint measuring approximately 255 by 90 feet:

It has a steel “I” beam frame and is supported by a concrete slab and footings. The flat roof is covered with composite asphalt roofing material and has a narrow metal flashing around the edge. Two continuous rows of steel framed industrial windows are located on the stucco covered north side [Plate 3.3.9–9]. Each window has three horizontal lights with a central panel that pivots to allow ventilation. A row of the same windows is located on the northern end of the east side [Plate 3.3.9–10]. The remainder of the east side and the south façade consists of poured concrete walls with no windows [Plate 3.3.9–11]. The main entrance is centered on the northern side and projects from the main façade. The doorway consists of a single steel entry door with a rectangular light. It is framed by [a] single pane side light and a single pane horizontal light over the door. The entrance is covered by a rectangular concrete awning. It is accessed by a concrete walk and steps that lead to the sidewalk along Pacific Highway [Plate 3.3.9–12] … A large sliding shop door is located at the north end of the east façade and a single solid steel entry door is located along the south end in the poured concrete section. A basement level vehicle entrance is centered on the south side [Plate 3.3.9–13]. Several louvered vents at ground level extend eastward along the façade from this entrance. On the west end there are sets of wooden doors enclosing storage areas. A single story power house has been built onto the west end of the building [Plate 3.3.9–14]. A set of large double sliding shop doors are centered on its west façade. The door is framed on each side by three steel framed industrial windows each with three horizontal panes. Two windows on the east side have been replaced with louvered panels. One window on the south [west] side has been replaced with louvered vents [Plate 3.3.9–15]. The west façade south of the power house is covered by a three story shop addition [Plate 3.3.9–16]. It is constructed of steel “I” beams supported by concrete footings with a concrete slab floor. The addition is covered in vertical ribbed sheet metal on the sides and roof. (Van Wormer 1996a)

The final report determined that the CWT building was eligible for listing under CRHR and NRHP criteria; however, no specific criteria for significance were provided and the building was “not fully evaluated” (KEA Environmental 1996). Because the CWT building was not fully evaluated in 1996, a full evaluation is provided below.
Plate 3.3.9–9

View of the North Façade of the CWT Building
Showing Two Rows of Horizontal Windows, Facing West

The SDIA Airport Development Plan Project
Plate 3.3.9–10
View of the East Façade of the CWT Building, Facing Northwest
The SDIA Airport Development Plan Project
Plate 3.3.9–11
View of the South Façade of the CWT Building, Facing North
The SDIA Airport Development Plan Project
Plate 3.3.9–12
View of the Main Entrance to the CWT Building on the North Façade, Facing West

The SDIA Airport Development Plan Project
Plate 3.3.9–13
View of the Basement-Level Vehicle Entrance on the South Façade of the CWT Building, Facing Northeast
The SDIA Airport Development Plan Project
Plate 3.3.9–14
View of the North Façade of the CWT Building Power House, Facing South
The SDIA Airport Development Plan Project
Plate 3.3.9-15

View of the West and South Façades of the CWT Building Power House, Facing East

The SDIA Airport Development Plan Project
Plate 3.3.9–16

View of the Three-Story Addition on the South
Facade of the CWT Building, Facing Northeast

The SDIA Airport Development Plan Project
City of San Diego Modernism Context Statement

In October of 2007, the City of San Diego developed and implemented the Modernism Context Statement (City of San Diego 2007). The stated purpose of the Modernism Context Statement is to “assist in the identification, evaluation and preservation of significant historic buildings, districts, sites, and structures associated with the Modernism movement in San Diego from 1935 to 1970.” It was created to better understand “Modern era resources and the types of resources that are significant to the history and development of San Diego.” Although the City of San Diego is not the lead agency for this project, the Modernism Context Statement is an appropriate analytical basis for the evaluation of the CWT building.

When completed in 1947, the CWT building could be best described as displaying characteristics of the International architectural style. According to the Modernism Context Statement (City of San Diego 2007), the International style was a major worldwide architectural trend in the 1920s and 1930s, reflecting the formative decades of Modernism prior to World War II. Although the International style originated in western Europe, it transcended any national or regional identity because International-style architecture made no reference to local vernaculars or traditional building forms. The style quickly migrated to the United States as European architects fled prior to World War II. In Los Angeles, immigrant architects Rudolph Schindler and Richard Neutra were instrumental in popularizing the International style. The emergence of International architecture in San Diego came later, as most examples were built after 1935 and into the 1970s.

Primary Character-Defining Features

According to the Modernism Context Statement, there are four Primary character-defining features of the International architectural style, which have been specifically applied to the CWT building, accordingly:

1. Flat roofs (cantilevered slabs or parapets)

 The CWT building features a flat roof with a large parapet projecting above the roofline on the northeast façade. Therefore, the CWT building does possess this Primary character-defining feature of the International style.

2. Lack of applied ornament

 The CWT building does not feature any applied ornamentation, and therefore, does possess this Primary character-defining feature of the International style.

3. Horizontal bands of flush windows

 The CWT building features two horizontal bands of flush windows along the northeast
façade, and therefore, does possess this Primary character-defining feature of the International style.

4. **Asymmetrical façades**

 The CWT building features an asymmetrical façade with the southeastern portion used as office space and the northeastern portions used for industrial purposes. Therefore, the CWT building does possess this Primary character-defining feature of the International style.

Of the **four** Primary character-defining features of the International architectural style expressed in the Modernism Context Statement, the CWT building possesses **four**.

Secondary Character-Defining Features

According to the Modernism Context Statement, there are four Secondary character-defining features of the International architectural style, which have been specifically applied to the CWT building, accordingly:

1. **Square corners**

 The CWT building features square corners, and therefore, does possess this Secondary character-defining feature of the International style.

2. **Common exterior materials include concrete, brick, and stucco**

 The CWT building features a stucco exterior, and therefore, does possess this Secondary character-defining feature of the International style.

3. **Steel sash windows (typically casement)**

 The CWT building features steel sash, pivot windows; however, none are casement. Therefore, the CWT building does not possess this Secondary character-defining feature of the International style.

4. **Corner windows**

 The CWT building does not feature any corner windows; each corner of the building is a wall terminus. Therefore, the CWT building does not possess this Secondary character-defining feature of the International style.
Of the four Secondary character-defining features of the International architectural style expressed in the Modernism Context Statement, the CWT building currently possesses two.

Integrity Evaluation

When evaluating a historic resource, integrity is the authenticity of the resource’s physical identity clearly indicated by the retention of characteristics that existed during its period of significance. It is important to note that integrity is not the same as condition. Integrity directly relates to the presence or absence of historic materials and character-defining features, while condition relates to the relative state of physical deterioration of the resource. In most instances, integrity is more relevant to the significance of a resource than condition; however, if a resource is in such poor condition that original materials and features may no longer be salvageable, then the resource’s integrity may be adversely impacted.

In order to assess each aspect of integrity when evaluating the CWT building, the following steps were taken, as recommended by Milbrooke et al. (1998):

1. **Location** is the place where a resource was constructed or where an event occurred.

 Integrity of location was assessed by reviewing historic records and aerial photographs in order to determine if the building has always existed at its present location or if it has been moved or rebuilt. A review of historic aerial photographs revealed that the CWT building has not been moved since its date of construction in 1947. Therefore, the CWT building retains integrity of location.

2. **Design** results from intentional decisions made during the conception and planning of a resource. Design includes form, plan, space, structure, and style of a property.

 Integrity of design was assessed by evaluating the spatial arrangement of the building and any unique architectural features present. No building permits for the CWT building could be found and the only modification that could be seen in historic aerial imagery is the three-story addition on the northwest façade, located southwest of the power house and transistors. However, the addition is not visible from the primary (northeast) façade and has not negatively impacted any original character-defining features present on the building. Because the CWT building is still representative of its original design in form, plan, space, structure, and style, it retains integrity of design.

3. **Setting** applies to a physical environment, the character of a resource’s location, and a resource’s relationship to the surrounding area.
Integrity of setting was assessed by inspecting the elements of the property, which included topographic features, open space, views, landscapes, vegetation, man-made features, and relationships between buildings and other features. The setting of the CWT building has significantly changed since its completion in 1947. The CWT building was recorded in 1996 as part of the Consolidated Aircraft Plant No. 1 (Convair/General Dynamics manufacturing facility [Site P-37-015531]) (Van Wormer 1996b). All other buildings within the Consolidated Aircraft Plant No. 1 were demolished between 1996 and 2000. With the removal of the other buildings, the CWT building does not retain integrity of setting.

4. **Materials** comprise the physical elements combined or deposited in a particular pattern or configuration to form a property.

Integrity of materials was assessed by determining the presence or absence of original building materials, as well as the possible introduction of materials, which may have altered the architectural design of the building. The CWT building does not appear to have been significantly altered in any way. Besides the addition of the three-story, corrugated metal addition at the rear of the building, no new materials have been introduced and all original materials appear to have been retained. Therefore, the CWT building retains integrity of materials.

5. **Workmanship** consists of the physical evidence of crafts employed by a particular culture, people, or artisan, which includes traditional, vernacular, and high styles.

Integrity of workmanship was assessed by evaluating the quality of the architectural features present in the building. Because there is no evidence indicating that the CWT building has undergone any major alterations, it retains integrity of workmanship.

6. **Feeling** relies upon present physical features of a property to convey and evoke an aesthetic or historic sense of past time and place.

Integrity of feeling was assessed by evaluating whether or not the resource’s features, in combination with its setting, conveyed an aesthetic sense of the property in 1947 when the CWT building was completed. Because the CWT building lost integrity of setting with the removal of the Consolidated Aircraft Plant No. 1 buildings between 1996 and 2000, which were located immediately north of the CWT building, it no longer conveys a historic sense of past time and place, and therefore, does not retain integrity of feeling.
7. **Association** directly links a property with a historic event, activity, or person of past time and place, and requires the presence of physical features to convey the property’s character.

The CWT building was originally constructed as a wind tunnel testing facility and still functions as such. The facility began testing operations in 1947 under the direction of Consolidated Vultee (Convair). In 2006, the San Diego Air and Space Museum purchased the CWT building, which now serves as both the museum’s San Diego Air and Space Technology Center and a testing facility. Because the CWT building was the first low-speed wind tunnel facility constructed in San Diego and still retains its original function, it does possess integrity of association.

NRHP/CRHR Evaluation

In order for a historic resource to be considered eligible for listing on the NRHP or the CRHR, it must be determined significant at the local, state, or national level under one or more of the following criteria:

- **NRHP/CRHR Criterion A/1:**

 It is associated with events that have made a significant contribution to the broad patterns of history.

 The CWT building was originally constructed as a wind tunnel testing facility. Currently, the building is still functioning as a wind tunnel testing facility. The facility began testing operations in 1947 under the direction of Consolidated Vultee (Convair). In 2006, the San Diego Air and Space Museum purchased the CWT building, which now serves as both the museum’s San Diego Air and Space Technology Center and a testing facility. Because the CWT building was the first low-speed wind tunnel facility constructed in San Diego and still retains its original function, it is significant under Criterion A/1.

- **NRHP/CRHR Criterion B/2:**

 It is associated with the lives of persons important in our past.

 No single person is specifically associated with the CWT building. Because archival research does not associate the building with any persons important in our past, the CWT building is not significant under Criterion B/2.
• **NRHP/CRHR Criterion C/3:**
 It embodies the distinctive characteristics of a type, period, region, or method of construction; represents the work of an important creative individual; or possesses high artistic values.

 The CWT building exhibits all four Primary and two Secondary character-defining features of the International architectural style. The building has been minimally altered since its completion in 1947 and still retains integrity of design, materials, and workmanship. In addition, the building was the first low-speed wind tunnel facility constructed in San Diego and still operates as such. Therefore, the CWT building is a good example of an International-style, 1940s, wind tunnel testing facility, and is significant under Criterion C/3.

• **NRHP/CRHR Criterion D/4:**
 It has yielded, or may be likely to yield, information important in prehistory or history.

 The CWT building is currently an operating wind tunnel testing facility and the San Diego Air and Space Technology Center for the San Diego Air and Space Museum. Because the CWT building functions to educate the public on the history of aviation and aircraft manufacture, it is significant under Criterion D/4.

Conclusion

The CWT building was constructed as a low-speed wind tunnel facility in 1947 and still functions as such. In addition, the building functions as the San Diego Air and Space Technology Center for the San Diego Air and Space Museum. The building retains five out of seven aspects of original integrity and is a good example of a specific type, method, and period of construction (International-style, 1940s, wind tunnel testing facility). The CWT building is significant under NRHP/CRHR Criteria A/1, C/3, and D/4 for its construction as the first low-speed wind tunnel facility in San Diego and its ability to provide further information in the study of aerospace and aviation technology through continued testing. The CWT building is currently owned by the San Diego Air and Space Museum and will not be impacted by the proposed project. Therefore, the proposed SDIA Airport Development Plan will not result in an adverse impact to the CWT building.
4.0 INTERPRETATION OF RESOURCE IMPORTANCE AND IMPACT IDENTIFICATION

4.1 Resource Importance
The current survey identified evidence of historic occupation within the SDIA Airport Development Plan Project APE. In total, nine historic resources were reviewed as part of the current project, including P-37-036756 through P-37-036762, P-37-015548, and P-37-028620. All resources were evaluated for significance under NRHP and CRHR criteria (Table 4.1–1). Sites P-37-015548, P-37-028620, and P-37-036756 were evaluated as significant under one or more designation criteria and sites P-37-036757 through P-37-036762 were evaluated as not significant under any designation criteria.

Table 4.1–1
Evaluation Summary for Historic Resources Within the Project APE

<table>
<thead>
<tr>
<th>Site</th>
<th>NRHP/CRHR Evaluation</th>
<th>Direct Impact</th>
<th>Adverse Effect</th>
<th>Mitigation Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-37-015548</td>
<td>Significant under Criteria A/1, C/3, and D/4</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>P-37-028620</td>
<td>Significant under Criterion A/1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>P-37-036756</td>
<td>Significant under Criterion A/1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>P-37-036757</td>
<td>Not significant (addition to P-37-036756)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>P-37-036758</td>
<td>Not significant</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>P-37-036759</td>
<td>Not significant</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>P-37-036760</td>
<td>Not significant</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>P-37-036761</td>
<td>Not significant</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>P-37-036762</td>
<td>Not significant</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Site P-37-015548 (the CWT building) was determined eligible for listing on the NRHP/CRHR under Criteria A/1, C/3, and D/4 due to its construction as the first low-speed wind tunnel facility in San Diego and its ability to provide further information about aerospace and aviation technology through continued testing conducted at the facility. However, Site P-37-015548 is located outside of the development footprint for the SDIA Airport Development Plan Project and will not be impacted.

Site P-37-028620 (the UAHT building) was determined eligible for listing on the NRHP/CRHR under Criterion A/1 since it is the oldest surviving structure within the airport and is associated with the “earliest period of development at Lindbergh Field between 1928 and 1933” (Van Wormer and Robbins-Wade 2006). Site P-37-028620 is planned for demolition in 2022.
Site P-37-036756 (Terminal 1) was determined eligible for listing on the NRHP/CRHR under Criterion A/1 as a reflection of the modernization of Lindbergh Field during the commercial air traffic boom of the 1960s and 1970s. Site P-37-036756 is planned for demolition in 2034. Site P-37-036757 (Terminal 2 East) is also planned for demolition in 2034. Although P-37-036757 is not significant under any NRHP or CRHR criteria, because it was designed as an addition to and constructed to mimic the design and materials of P-37-036756, it was documented along with P-37-036756.

Sites P-37-036758 through P-37-036762 were evaluated as not significant under NRHP or CRHR criteria. Based upon a lack of association with any significant persons or events, any distinguishing characteristics, and any future research potential, these resources do not qualify as significant historic resources according to the criteria listed in CEQA, Section 15064.5, and Section 106 of the NHPA. Any impacts to these resources would not be considered adverse.

4.2 Impact Identification

As part of the SDIA Airport Development Plan Project, the existing Terminal 1 and Terminal 2 East buildings, administrative buildings, and airline support facilities will be demolished and replaced with a new 1,110,000-square-foot terminal building and a new on-airport access runway. The proposed project will result in direct and adverse impacts to sites P-37-028620 and P-37-036756. NRHP/CRHR-significant Site P-37-015548, however, will not be directly impacted or adversely affected by the proposed project.

Where possible, impacts to significant historic resources should be avoided through project redesign. If complete avoidance of the historic resources cannot be accomplished through project redesign, measures to mitigate impacts must include the documentation of impacted structures and the preservation of information. An impact study was conducted to determine if the project could be redesigned to avoid impacting sites P-37-028620 and P-37-036756, or if the buildings could be relocated. The study determined that there are no redesign or relocation alternatives, based upon financial constraints and the requirements necessary to achieve project feasibility. Because the two buildings were evaluated as eligible for listing on the NRHP and the CRHR, HABS/HAER documentation of the buildings was completed in order to fully document the resources and mitigate adverse effects to those resources prior to their demolition. Although P-37-036757 is not significant under any CRHR or NRHP criteria, because it was designed as an addition to and constructed to mimic the design and materials of P-37-036756, it was documented along with P-37-036756. The HABS/HAER documentation is provided in Appendix F of this report.

4.2.1 Native American Heritage Values

Based upon the SLF search conducted by the NAHC, no sacred sites or locations of religious or ceremonial importance are located within the project; however, the NAHC did indicate that the area is culturally sensitive. During the current evaluation, no artifacts or remains were identified or recovered that could be reasonably associated with such practices. In accordance
with the recommendations of the NAHC, BFSA contacted all tribal representatives listed in the NAHC response letter. As of the date of this report, two responses have been received. The Viejas Band of Kumeyaay Indians indicated that the project area has cultural significance or ties to the tribe and have requested that a Kumeyaay cultural monitor be on-site for all ground-disturbing activities. The San Pasqual Band of Mission Indians indicated that the project is not within the boundaries of the recognized San Pasqual Indian Reservation, nor within territory the tribe considers its Traditional Use Area; however, since the project is in close proximity to the project, the San Pasqual Band has requested information as the project progresses and that San Pasqual cultural monitors be on-site for all ground-disturbing activities. A copy of all Native American correspondence can be found in Appendix D.
5.0 MANAGEMENT CONSIDERATIONS – MITIGATION MEASURES AND DESIGN CONSIDERATIONS

5.1 Mitigable Impacts
The development footprint for the SDIA Airport Development Plan Project will directly impact eight of the nine historic resources present within the APE. Of the eight sites that will be impacted, two are significant (P-37-028620 and P-37-036756) according to criteria listed in CEQA, Section 15064.5, and Section 106 of the NHPA, and six are not significant (P-37-036757 through P-37-036762) under any NRHP or CRHR designation criteria. Any impacts to non-significant sites P-37-036757 through P-37-036762 associated with the proposed development will not be adverse. Any impacts to NRHP/CRHR-significant sites P-37-028620 or P-37-036756 associated with the proposed development will be adverse and require mitigation.

5.2 Mitigation and Significant Adverse Effects
No mitigation measures will be recommended for sites P-37-036758 through P-37-036762, which are not significant and not eligible for listing on the NRHP or the CRHR. However, the project is determined to have a substantial adverse impact to significant sites P-37-028620 (the UAHT building) and P-37-036756 (Terminal 1). These impacts are associated with the demolition of the buildings in 2022 and 2034, respectively, prior to the construction of the new terminal building.

An impact study was conducted to determine if the project could be redesigned to avoid impacting sites P-37-028620 and P-37-036756, or if the buildings could be relocated. The study determined that there are no redesign or relocation alternatives, based upon financial constraints and the requirements necessary to achieve project feasibility. However, a HABS/HAER-level documentation of sites P-37-028620 and P-37-036756 can achieve mitigation by exhausting the research potential of the sites through documentation.

Because the two buildings were evaluated as eligible for listing on the NRHP and the CRHR, HABS/HAER documentation of the buildings was completed in order to fully document the resources and mitigate adverse effects to those resources prior to their demolition. Although P-37-036757 (Terminal 2 East) is not significant under any CRHR or NRHP criteria, because it was designed as an addition to and constructed to mimic the design and materials of P-37-036756 (Terminal 1), it was also documented. The HABS/HAER documentation is provided in Appendix F of this report.

Mitigation for inadvertent discoveries during construction of future phases of the SDIA Airport Development Plan Project will not be recommended, as there is no realistic potential to discover any historic or prehistoric sites within the APE, which was previously a mud flat within the San Diego Bay tidelands area. Archaeological and/or Native American monitoring is not recommended.
5.3 Native American Heritage Resources/Traditional Properties

BFSA requested a review of the SLF by the NAHC. The NAHC SLF search did not indicate the presence of any sacred sites or locations of religious or ceremonial importance within the search radius; however, the NAHC did indicate that the area is culturally sensitive. In accordance with the recommendations of the NAHC, BFSA contacted all tribal representatives listed in the NAHC response letter. As of the date of this report, two responses have been received. The Viejas Band of Kumeyaay Indians indicated that the project area has cultural significance or ties to the tribe and have requested that a Kumeyaay cultural monitor be on-site for all ground-disturbing activities. The San Pasqual Band of Mission Indians indicated that the project is not within the boundaries of the recognized San Pasqual Indian Reservation, nor within territory the tribe considers its Traditional Use Area; however, since the project is in close proximity to the project, the San Pasqual Band has requested information as the project progresses and that San Pasqual cultural monitors be on-site for all ground-disturbing activities. A copy of all Native American correspondence can be found in Appendix D.
6.0 REFERENCES CITED

Allen, Rebecca, Rebecca McCorkle-Apple, James Cleland, Christy Doland, and Stephen Van Wormer
1997 Historic and Archaeological Resources Protection Plan for the Fleet Anti-Submarine Warfare Training Center, Pacific, San Diego, California. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Alter, Ruth
1999 Results of the Historic Building Assessment for 1128 Oliver Avenue, San Diego, California. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Ayala, Jennifer and Marie Burke Lia
2016 3554-3590 Kettner Blvd. & 1949 W. Walnut St., SD, CA 92101. Office of Marie Burke Lia. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Bada, Jeffrey L., Roy A. Schroeder, and George F. Carter

Bancroft, Hubert Howe

Becker, Mark S. and Arleen Garcia-Herbst
2008 A Cultural Resources Survey Using the Archaeological Resources Report Form (Appendix D) for the Veterans Village of San Diego Project, San Diego, California. ASM Affiliates. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Bell, Diane
2014 Commuter Terminal Gets New Mural. San Diego Union Tribune. 9 April. San Diego, California.

Blick, J.D.
Bolton, Herbert Eugene (editor)

Brandes, Ray
1981a Historic Resources Inventory for Uptown Area, San Diego, California. Department of Parks and Recreation. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

1981b Historic Resources Inventory for Middletown Area, San Diego, California Completed by the University of San Diego, January 1981. Department of Parks and Recreation. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Brandes, Ray, James R. Moriarty, and Susan H. Carrico
1985 *New Town, San Diego, California.* San Diego Science Foundation.

BRG Consulting, Inc.
2003 Draft Environmental Impact Report for the Proposed San Diego County Administration Center Waterfront Park Development and Master Plan. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Brian F. Smith and Associates, Inc.
Various dates. Research library holdings including Sanborn maps, city directories, published regional histories, aerial photographs, and geologic and paleontological references.

Brownlee, John C.

Brunzell, David

Bull, Charles S.

Bullicruz, E.L.

2013b Section 106 Consultation for Speaker System Installation, Building 31 and Parade Deck, Marine Corps Recruit Depot Historic District, San Diego. United States Marine Corps. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2013c Section 106 Consultation for Installation of Three Fire Pits, West Side of Building Ten, Marine Corps Recruit Depot Historic District, San Diego. United States Marine Corps. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2013d Section 106 Consultation for HVAC Installation, Building 16, Marine Corps Recruit Depot Historic District, San Diego. United States Marine Corps. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2013e Section 106 Consultation for HVAC Installation, Building Eight, Marine Corps Recruit Depot Historic District, San Diego. United States Marine Corps. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Burke Lia, Marie

1991 Moorsteen Furniture Manufacturing Company Building, 2141-2165 India Street (APN 533-129-1). Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2007 1907 Kettner Boulevard, San Diego, California 92101. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Burke Lia, Marie, Ray Brandes, Susan H. Carrico, Kathleen Flanigan, Anne Pierce Cooper, and Kathleen Crawford

1989 Historic Site Inventory of Harborview. Marie Burke Lia and Associates. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Cardenas, D. Sean

Carrico, Richard
1977 Cultural Resource Inventory of the United States Coast Guard Air Station Administration Building, San Diego, California. Westec Services, Inc. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Carrico, Richard L.

Carrico, Richard L. and Clifford V.F. Taylor

Carrillo, Charles and Charles Bull
1979 Archaeological Investigation of the MTDB Fixed Guideway Project Route, Center City to San Ysidro. RECON. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Carter, George F.

1980 *Earlier than You Think: A Personal View of Man in America*. Texas A&M University Press, College Station.

Case, Robert P.

Case, Robert and Carol J. Serr
2005 Cultural Resources Mitigation Monitoring Report for the Sewer Group 680 Project (LDR No. 41-0386), Bankers Hill City of San Diego, California. Mooney, Jones & Stokes. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.
2006 Cultural Resources Mitigation Monitoring Report for the Sewer Group 6814 Project (LDR No. 40-0187), Uptown Community City of San Diego, California. Mooney Jones and Stokes. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Case, Robert P. and Richard L. Carrico

Caterino, David
2005 The Cemeteries and Gravestones of San Diego County: An Archaeological Study. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Caughey, John W.

Chapman, Charles E.

Charleson, Andrew

Chiang, Christina

City of San Diego
1993 DEIR for North Metro Trunk Sewer. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

1996a Proposed Mitigated Negative Declaration of the Group Job #487. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

1996b Mitigated Negative Declaration for Sewer and Water Group Job No. 639. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.
1998 Seismic Retrofit Programmatic Agreement for Garnet Ave, North Harbor Drive West Mission Bay. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2001c Public Notice of a Proposed Mitigated Negative Declaration Sewer Main Replacement Group Job 672. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2002 Public Notice of a Proposed Mitigated Negative Declaration; Naval Training Center Park General Development Plan. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2003 MITIGATED Negative Declaration for the Relocation of Buildings 158, 159, and 207 at the Naval Training Center (NTC). Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2011 Biographies of Established Masters. On file at the City of San Diego.

2013 The Upas Street Pipeline Replacement Project. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2014 Sewer Group Job 743. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Cook, John

2005 Archaeological Monitoring for the Kearney Property in Crest, San Diego County, California. ASM Affiliates. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.
Cordileone, Joe and Diana Cordileone
2010 Hans Hirte Residence 2465 Curlew Street San Diego, California 92101. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Craig, Lee
1966 World of Wings: Area Pilots to Get Briefings by FAA. Independent Press-Telegram, 30 October. Long Beach, California.

Crawford, Kathleen A.
2011a Fat City Steakhouse, China Camp, Denny’s, Formerly Top’s Restaurant and Motel. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2011b 1769-1797 San Diego Avenue, San Diego, CA 92110. Office of Marie Burke Lia. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2012a 2430 Union Street, San Diego, CA 92101. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2012b 1885 Hancock Street, San Diego, CA 92110. Office of Marie Burke Lia. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2014 2119 Kettner Boulevard, San Diego, CA 92101. Marie Burke Lia. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Crawford, Kathleen and Richard Carrico
1995 Final Historic Properties Phase II Eligibility Study of the Naval Training Center, San Diego County, CA. Ogden Environmental. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Crawford, Kathleen and Scott Moomjian
2005 Historical Assessment of the Commercial Buildings Located at 3621-3649 India Street, San Diego, California 92103. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Crouch, Herbert

Davis, Rob
2006 Miramar: What Went Wrong? The Voice of San Diego. 9 November. Electronic
Davis, E.L., C.W. Brott, and D.L. Weide

Denardo, Carole, Rachael Greenlee, and Caprice Harper

Duke, Curt
2002 Cultural Resource Assessment AT&T Wireless Services Facility No. 10012, San Diego County, CA. LSA. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Elliott, Wallace W.

Engelhardt, Zephyrin

Engstrand, Iris Wilson

Enriquez, Paul

Ezell, Paul H.

Farley, Sarah L.
2012 Addendum to FCC Form 620 Harbor Drive Harbor Island Drive (ROW), San Diego,
San Diego County, California 92101, EBI Project #61110632. EBI Consulting. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Gallegos, Dennis R.

Gallegos, Dennis R. and Carolyn E. Kyle
1988 Five Thousand Years of Maritime Subsistence at Ballast Point Prehistoric Site SDI-48 (W-164) San Diego, California. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Garcia, Mario T.

Garcia-Herbst, Arleen
2015 Cultural Resources Inventory for the Pacific Beach Pipeline Project, City of San Diego, CA. Spindrift Archaeological Consulting, LLC. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Gardner, Jill and Mark Becker
2010 Archaeological Monitoring Report for the Veterans Village of San Diego Project, San Diego, California. ASM Affiliates. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Globa, Victor
2012 San Diego International Airport Draft Environmental Assessment Runway 9 Displaced Threshold Project San Diego, California Section 106 Consultation. Federal Aviation Administration. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2013 San Diego International Airport, Northside Improvements Project, San Diego CA. Federal Aviation Administration. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Gordinier, Jerry G.

Hall, Matthew T.
Heilbron, Carl H., editor
1936 *History of San Diego County*. The San Diego Press Club, San Diego, California.

Heiges, Harvey

Heritage Architecture and Planning
2008 2415–2421 Union Street, San Diego, CA 92101. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Herrmann, Myra

Huey, Danielle

IS Architecture
2008 Historical Resources Board Nomination for the Ralph H. Pratt Speculative House 3503 Jackdaw Street San Diego, California 92103. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Jackson Research Projects

Jacques, Terri and Richard Carrico
1981 Cultural Resources Inventory of the United States Coast Guard Air Station (Five Structures) San Diego, California. Westec Services, Inc. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

KEA Environmental
1996 General Dynamic Facilities Demolition Project: Final EIR. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Kim, Steve
2008 Proposed Federal Aviation Administration (FAA) Airport Surface Detection
Equipment-Model X (ASDE-X) Upgrade System to Serve San Diego International Airport (SAN), San Diego, California. Federal Aviation Administration. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Kraft, Jennifer R. and Brian F. Smith

KTU+A Planning and Landscape Architecture
2007 Marine Corps Recruit Depot Historic District Landscape Plan, Base Exterior Architecture Plan – Appendix D. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Kyle, Carolyn

2005b Cultural Resource Monitoring for the Naval Training Center Central Promenade Project City of San Diego, California. Kyle Consulting. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2006b Cultural Resource Monitoring and Site Testing for the Sail Ho Golf Course Project Located Within the Former Naval Training Center City of San Diego. Kyle Consulting. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2009 Cultural Resource Monitoring for the Shoreline Plaza Project Located Within the Former Naval Training Center, City of San Diego, California. Kyle Consulting. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Kyle, Carolyn E. and Dennis R. Gallegos
1993 Data Recovery Program for a Portion of Prehistoric Site CA-SDI-10148, East Mission Gorge Pump Station and Force Main, San Diego, California. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Kyle, Carolyn and et al.

Kyle, Carolyn and Roxana L. Phillips

Kyle, Carolyn, Adella Schroth, and Dennis R. Gallegos
1990 Early Period Occupation at the Kuebler Ranch Site SDI-8,654 Otay Mesa, San Diego County, California. Prepared for County of San Diego, Department of Public Works by ERCE Environmental and Energy Services Co., San Diego.

Kyle, Carolyn, Roxana L. Phillips, Susan Bugbee, and Dennis R. Gallegos
1998 Cultural Resource Constraints Study for the North Bay Redevelopment Project, City of San Diego, CA. Gallegos and Associates. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Loftus, Shannon
2011a Cultural Resource Records Search and Site Survey, AT&T Site SD0332, Spanish Landing, 4000 Block, Harbor Drive Spanish Landing Next to Comfort Station #2, San Diego, San Diego County, California 92101. Ace Environmental, LLC. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2011b Cultural Resource Records Search and Site Survey, AT&T Site SS0121, Commuter Terminal, San Diego Port Authority Right-of-Way on Harbor Drive, San Diego, San
Diego County, California 92101. Ace Environmental, LLC. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2012a AT&T Site SD0391, McMillin Permanent, 2750 Womble Road, San Diego, San Diego County, California 92106. Ace Environmental. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2012b Cultural Resources Records Search and Site Survey, AT&T Site SS0106, Residence Inn, 1747 Pacific Highway, San Diego, San Diego County, California 92101. Ace Environmental, Inc. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2013 Cultural Resource Records Search and Site Survey, AT&T Site SD0391, Point Loma Temp, 2590 Womble Road, Vista, San Diego County, California 92106. Ace Environmental, LLC. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Macaskill, Jaye E.
2011 Nomination to the City of San Diego Register of Historical Resources: The Mission Brewery Bottling Plant, 1747 Hancock Street, San Diego, CA 92101. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

MacMullen, Jerry

Manley, William R., Sue A. Wade, and Matt C. Bischoff

Masunaga, Samantha

May, Ronald V. and Dale Ballou May

May, Vonn Marie
2006 Uptown Historic Architectural and Cultural Landscape Reconnaissance Survey. IS
Architecture. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

McAlester, Virginia Savage

Merriam-Webster

Milbrooke, Anne, Patrick Andrus, Jody Cook, and David B. Whipple

Miller, Jason
2001 Archaeological Monitoring During Excavation of Sewer Group Job 635. RMW Paleo Associates. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Minshall, Herbert L.

Minshall, Herbert L.

Modern San Diego

Moomjian, Scott A.
2007a Historical Assessment of the Elwyn B. (Jay) Jr. & Marian Gould House, 2333 Albatross Street, San Diego, California 92101. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2007b Historical Assessment of the Don and Rita Keller/Lloyd Ruocco House, 1433 Puterbaugh Street, San Diego, California 92103. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Moratto, Michael J.

Moriarty, James R., III

Moriarty, James R., III and Herbert L. Minshall

Morn, Howard
1952 Harbor Board Plans for 42 Projects; Expenditures to Total $880,000 for Work to Begin this Week on Piers, Airport. *The San Diego Union*, 4 May. San Diego, California.

Moyer, Cecil C.

Nakhshab, Soheil

Olsen, Richard and Sue Wade

Palomar, Percival C.
Palou, Fray Francisco

Perez, Don C.
2014a Cultural Resources Survey, SAN Terminal 2 South/Ensite #20302 (282094), 4051 Harbor Drive, San Diego, San Diego County, California 92101. EBI Consulting. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2014b Cultural Resources Survey, Sassafras/Ensite #20787 (280742), 3420 Kettner Boulevard, San Diego, San Diego County, California 92101, EBI Project No. 61146854. EBI Consulting. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Pescador, Katrina, Alan Renga, Pamela Gay, and the San Diego Air and Space Museum

Pierson, Larry J.

Pigniolo, Andrew and Kimberly Lauko
2005 Cultural Resource Monitoring Report for the Sewer Group 700 Project, City of San Diego, California. Laguna Mountain Environmental, Inc. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.
Pitt, Leonard

Potter, Elizabeth and Jerry Schaefer
2007 Archaeological Monitoring of the A-1 Storage Project, San Diego, California. ASM Affiliates. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Pourade, Richard F.

Price, Glenn W.
1967 *Origins of the War with Mexico.* University of Texas Press, Austin.

Raven-Jennings, Shelly and Brian F. Smith
1999a Final Report for Site SDI-8330/W-240 ‘Scraper Hill,’ Escondido, California. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

1999b Report of Excavations at CA-SDI-4608: Subsistence and Technology Transitions during the Mid-to-Late Holocene in San Diego County (Scripps Poway Parkway). Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Reddy, Seetha N.
2007 A Programmatic Approach for National Register Eligibility Determinations of Prehistoric Sites Within the Southern Coast Archaeological Region, California. Statistical Research, Inc. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Reeves, Brian O.K.
Reeves, Brian, John M.D. Pohl, and Jason W. Smith

Reeves, Donald J. and Mark Sams

Rickling, Brian S.

Robbins-Wade, Mary Judith

2002 Doma Lofts by City Mark – Archaeological Monitoring (Affinis Job No. 1611). Affinis Environmental Services. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Robbins-Wade, Mary and Stephen R. Van Wormer

Robinson, William Wilcox

Rogers, Malcolm

Rolle, Andrew F.
Rosen, Martin
2000 Cultural Resources North Harbor Drive Bridge #57C-015. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Roth, Linda and Judy Berryman
1995 Historic Properties Eligibility Study of Pier 9, Naval Training Center, San Diego, San Diego County. Roth and Berryman. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Roy, Julie

SANDAG
2013 Mid-Coast Corridor Transit Project: Historic Property Effects Report. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

San Diego Air and Space Museum
N.d. Historic photographs.

San Diego Business Journal

San Diego County Recorder
Various dates. Various official records.

San Diego History Center
Various dates. Various records, receipts, maps, and photographs.

San Diego International Airport
San Diego Newspaper Index
1850-1903

San Diego Unified Port District

2001 Taxiway C Extension & Port Master Plan Amendment, San Diego International Airport, San Diego, California. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

San Diego Union
1868 San Diego history. 6 February. San Diego, California.

1870a San Diego history. 23 June. San Diego, California.

1870b San Diego history. 10 November. San Diego, California.

1872 San Diego history. 2 January. San Diego, California.

1874 San Diego history. March. San Diego, California.

1900 San Diego history. February. San Diego, California.

1912 San Diego history. 3 August. San Diego, California.

1921a San Diego history. 8 October. San Diego, California.

1921b San Diego history. 25 October. San Diego, California.

1927 Airport Cited as Huge Benefit to City. 12 June:20. San Diego, California.

1928a Council Grants First Lease for Space in New Airport. 7 August:3. San Diego,
California.

1928b Dedicate Lindbergh Field with Great Aerial Spectacle. 17 August. San Diego, California.

1928c 222 Airplanes Stage Startling Review in Flight Over Airport. 17 August:3. San Diego, California.

1929a Start School for Airmen in City. 21 March:A. San Diego, California.

1929b Lauds Company for Work on S.D. Airport. 17 December:5. San Diego, California.

1931a Plane Leaves Airport Inaugurating Daylight Flyer Service to North. 28 May:A. San Diego, California.

1931b P.A.T Involved in Big Air Line Merger. 1 June:3. San Diego, California.

1931c Air Line Given Hangar Lease. 27 January:12. San Diego, California.

1931e Plan $30,000 Structure at City Airport. 2 February:7. San Diego, California.

1931f Work on $27,000 Hangar Started. 4 March:5. San Diego, California.

1931g Plane Leaves Airport Inaugurating Daylight Flyer Service to North. 28 May:A. San Diego, California.

1932a Airtech School is Rated High. 1 January:6. San Diego, California.

1932b Mayor to Start Work Tomorrow on Ryan Plant. 24 April:7. San Diego, California.

1932c Plans Complete for Events at Lindbergh Field. 24 July:2. San Diego, California.

1935a Building Permits: Consolidated Aircraft Corps, per Consolidated Steel Co., steel and concrete aircraft manufacturing plant. 3302 Atlantic St., on Tidelands: $300,000. 30 March:8. San Diego, California.

1935b Harbor Projects. 7 November:5. San Diego, California.

1939 Lindbergh Field Being Doubled to 413 Acres. 18 June:B-2. San Diego, California.

1944 Ryan Hangar on Way to New Location Near Plant. 10 October:7-A. San Diego, California.

1946 Advertisement: Convair Contributes to San Diego. 17 February:17-A. San Diego, California.

1947 Convair Closes Downey Plant. 1 April:B. San Diego, California.

1948 Plant Identified. 3 July:5-A. San Diego, California.

1949 Airport Terminal to Cost $120,000. 18 September:A-3. San Diego, California.

1957 Building Permit: Ryan Aeronautical Co. for a large warehouse at 2701 Harbor Drive. 28 April:F-14. San Diego, California.

1965 Realty Roundup: Year Ahead Looks Promising. 3 January:F2. San Diego, California.

1967a PSA to Provide Fast Reservations. 27 November:B-12. San Diego, California.

1967c A Constant Parade of All Types of Planes Roll Down the Strips. 7 February. San Diego, California.

1967d Air Terminal Previewed. 7 February. San Diego, California.

1967e Air Traffic Mark Set; Terminal Opens Soon. 6 January:X-2. San Diego, California.

1967f Terminal Facility to be Dedicated. 7 February:X-18. San Diego, California.

1967g PSA Building Pact Awarded. 14 January:C-7. San Diego, California.

1967h PSA Project is Entering Second Phase. 23 February:B-5. San Diego, California.

1968a Port Bonds Assure More Area Growth. 4 November. San Diego, California.

1968b A Salute to PSA: from the proud builders of their new home! 5 July:B-7. San Diego, California.

1968c San Diego’s Business: Air Freight Up; So is Terminal. 4 June:C-6. San Diego, California.

1970a Port OKs Bid on Addition to Air Terminal. 26 August. San Diego, California.

1971 Airport Terminal Expansion Sought. 3 October:B-4. San Diego, California.

1974a To Expand or Not: That’s Lindbergh’s Terminal Question. 15 February:B-15. San Diego, California.

1974b Port Commissioners Move on Airport Expansion Plan. San Diego, California.

1977a Golden Has Low Bid on Airport Job. 28 April:B-1. San Diego, California.

1979a Airport Terminal Ready to Open Wednesday. 8 July:B-10. San Diego, California.

1979b The ‘Second Airport’ at Lindbergh. 22 April:F-1 and F-4. San Diego, California.

Schaefer, Jerry

1994 Cultural Resources Evaluation for the Proposed North Metro Interceptor Sewer Project,
San Diego, Calif. Appendix F. Brian F. Mooney and Associates. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Shipek, Florence

Sholders, Mike

Shumway, George, Carl L. Hubbs, and James R. Moriarty

Sick, Fred W.

Smith, Brian F.
1993 A Cultural Resources Study for the Sewer Pump Station No. 5 Project. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

1996 The Results of a Cultural Resource Study at the 4S Ranch. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Smith, Brian F. and James R. Moriarty

Smoyer, Walter J. and Elizabeth D. Smoyer
2006 Historical Assessment of the Residence Located at 1603 Torrance Street, San Diego, California 92103. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Smythe, William E.

Stalters, Dave
2012 Section 106 Consultation for Repairs to Hangar Two, Coast Guard Air Station San Diego, San Diego County. U.S. Coast Guard. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2016 Signs on Hangar One and Hangar Two at Air Station San Diego, 2710 Harbor Drive, San Diego County. United States Coast Guard. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

State Historic Preservation Officer (SHPO)

Stewart, Don M.

Stroh, Robert C. (editor)
2001 Coastal Processes and Engineering Geology of San Diego, California. San Diego

Stropes, J.R.K. and Brian F. Smith

Stropes, Tracy A.

Stropes, Tracy A. and Brian F. Smith

Sutton, Lea

Tang, Bai, Michael Hogan, Mariam Dahdul, Teresa Woodward, and Daniel Ballester
2002 Historical Resources Compliance Report Track Improvement, Between San Diego and National City, and New Locomotive/Car Service and Inspection Facility in National City, San Diego County, CA. CRM Tech. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Tarasuck, Marc
1995 Architectural and Historical Assessment for 3042 State Street, San Diego, California 92103. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.
Diego State University, San Diego, California.

Trinkle, Kevin

True, Delbert L.

True, D.L. and Eleanor Beemer

True, D.L. and R. Pankey

United States Bureau of the Census
Various dates

United States Marine Corps

2011 Marine Corps Recruit Depot Proposing to Demolish an Addition to Building 30. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

2012 Section 106 Consultation for Modifications to ATM Machine, Building 10, Marine Corps Recruit Depot, San Diego. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

URS Corporation
2009a Results of Architectural History Survey for Verizon Cellular Communications Tower Site – Solar Caterpillar 2200 Pacific Highway (APN: 760-071-03), San Diego, CA 92101. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

U.S. Coast Guard
2007 Removal of an Existing Concrete Floating Dock at the CG Sector San Diego, 2710 North Harbor Drive, San Diego, California. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

U.S. Congress

U.S. Department of Homeland Security
2007 Draft Environmental Assessment: Construction of a Patrol Boat Pier and Floating Dock, United States Coast Guard Sector, San Diego, Harbor Drive Facility Port of San Diego, California. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

U.S. Department of Transportation
2011 Section 106 Consultation for the Mid-Coast Corridor Transit Project, San Diego County, CA. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Van Dyke, Theodore
1886 Southern California. Fords, Howard and Hulbert.

Van Wormer, Stephen R.
1991 Even the Kitchen Sink: Archaeological Investigations of SDI-10,258, the 1908-1913 San Diego City Dump. Unpublished report on file at the South Coastal Information
Center at San Diego State University, San Diego, California.

1996a Site Record Form for Site P-37-015548 (Building 35, Wind Tunnel, Consolidated Aircraft Plant No. 1). On file at the South Coastal Information Center at San Diego State University, San Diego, California.

1996b Site Record Form for Site P-37-015531 (Consolidated Aircraft Plant No. 1, Historic District). On file at the South Coastal Information Center at San Diego State University, San Diego, California.

2005 Site Record Form for Site P-37-028620 (United Airlines 1931 Hangar and Terminal [ASIG Building]). On file at the South Coastal Information Center at San Diego State University, San Diego, California.

Van Wormer, Stephen and Mary Robbins-Wade

Van Wormer, Stephen R., Susan D. Walter, and Dennis R. Gallegos

Various

N.d. Mission Brewery/American Agar Company. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

N.d. Bernardini Building. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

N.d. Dutch Flats/Ryan Field. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

N.d. General Dynamics Facilities, 3302 Pacific Highway, San Diego, CA. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

N.d. Marine Corps Recruit Depot, Barnett Avenue, San Diego, California. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.
N.d. Spanish Landing Site. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

N.d. Tucker House, 2470 Union Street, San Diego, California 92101. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

N.d. Naval Training Station Historic District – Amendment to the National Register of Historic Places Registration Form. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Wade, Sue
1990 Historic Properties Inventory for Secondary Treatment Clean Water Program for Greater San Diego: Confidential Appendices. RECON. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Wahoff, Tanya and Andrew L. York
2003 Cultural Resources Monitoring for Sewer Group Job 672, San Diego, California. EDAW, Inc. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.

Warren, Claude N.
1964 *Cultural Change and Continuity on the San Diego Coast*. Dissertation, University of California, Los Angeles.

Warren, Claude N., Gretchen Siegler, and Frank Dittmer

Waugh, Georgie

Weatherford, Ginger
Westec Services, Inc.

Widell, Cherilyn

Wilson, Stacie

Wolf, Scott and Sinead Ni Ghabhlain
2012 Results of Archaeological Monitoring for the Broadstone Little Italy Project, San Diego, California. ASM Affiliates, Inc. Unpublished report on file at the South Coastal Information Center at San Diego State University, San Diego, California.
7.0 LIST OF PREPARERS AND ORGANIZATIONS CONTACTED

The historic resources survey program for the SDIA Airport Development Plan Project was directed by Principal Investigator Brian Smith. The Class III survey was conducted by Project Archaeologist Jennifer Stropes, M.S., RPA and historic analyst Kimberly Ellis, M.H.P. The report text was prepared by Jennifer Stropes and Brian Smith with assistance from Courtney Accardy, Kimberly Ellis, and Elena Goralogia. Report graphics were provided by Kris Reinicke. Technical editing and report production were conducted by Elena Goralogia with assistance from Courtney Accardy and Caitlin Foote. The SCIC at SDSU provided the archaeological records search information.
APPENDIX A

Resumes of Key Personnel
Brian F. Smith, MA
Owner, Principal Investigator

Brian F. Smith and Associates, Inc.
14010 Poway Road • Suite A •
Phone: (858) 679-8218 • Fax: (858) 679-9896 • E-Mail: bsmith@bfsea-ca.com

Education

Master of Arts, History, University of San Diego, California 1982
Bachelor of Arts, History, and Anthropology, University of San Diego, California 1975

Professional Memberships

Society for California Archaeology

Experience

Principal Investigator
Brian F. Smith and Associates, Inc. 1977–Present
Poway, California

Brian F. Smith is the owner and principal historical and archaeological consultant for Brian F. Smith and Associates. Over the past 32 years, he has conducted over 2,500 cultural resource studies in California, Arizona, Nevada, Montana, and Texas. These studies include every possible aspect of archaeology from literature searches and large-scale surveys to intensive data recovery excavations. Reports prepared by Mr. Smith have been submitted to all facets of local, state, and federal review agencies, including the US Army Corps of Engineers, the Bureau of Land Management, the Bureau of Reclamation, the Department of Defense, and the Department of Homeland Security. In addition, Mr. Smith has conducted studies for utility companies (Sempra Energy) and state highway departments (CalTrans).

Professional Accomplishments

These selected major professional accomplishments represent research efforts that have added significantly to the body of knowledge concerning the prehistoric life ways of cultures once present in the Southern California area and historic settlement since the late 18th century. Mr. Smith has been principal investigator on the following select projects, except where noted.

Beech Apartments (2003), Bella Via Condominiums (2003), Acqua Vista Residential Tower (2003),
Northblock Lofts (2003), Westin Park Place Hotel (2001), Parkloft Apartment Complex (2001),
Renaissance Park (2001), and Laurel Bay Apartments (2001).

Archaeology at the Padres Ballpark: Involved the analysis of historic resources within a seven-block area
of the "East Village" area of San Diego, where occupation spanned a period from the 1870s to the
1940s. Over a period of two years, BFSA recovered over 200,000 artifacts and hundreds of pounds of
metal, construction debris, unidentified broken glass, and wood. Collectively, the Ballpark Project and
the other downtown mitigation and monitoring projects represent the largest historical archaeological
program anywhere in the country in the past decade (2000-2007).

4S Ranch Archaeological and Historical Cultural Resources Study: Data recovery program consisted of
the excavation of over 2,000 square meters of archaeological deposits that produced over one million
artifacts, containing primarily prehistoric materials. The archaeological program at 4S Ranch is the
largest archaeological study ever undertaken in the San Diego County area and has produced data
that has exceeded expectations regarding the resolution of long-standing research questions and
regional prehistoric settlement patterns.

Charles H. Brown Site: Attracted international attention to the discovery of evidence of the antiquity of
man in North America. Site located in Mission Valley, in the city of San Diego.

Del Mar Man Site: Study of the now famous Early Man Site in Del Mar, California, for the San Diego
Science Foundation and the San Diego Museum of Man, under the direction of Dr. Spencer Rogers and
Dr. James R. Moriarty.

Old Town State Park Projects: Consulting Historical Archaeologist. Projects completed in the Old Town
State Park involved development of individual lots for commercial enterprises. The projects completed
in Old Town include Archaeological and Historical Site Assessment for the Great Wall Cafe (1992),
Archaeological Study for the Old Town Commercial Project (1991), and Cultural Resources Site Survey at
the Old San Diego Inn (1988).

Site W-20, Del Mar, California: A two-year-long investigation of a major prehistoric site in the Del Mar
area of the city of San Diego. This research effort documented the earliest practice of
religious/ceremonial activities in San Diego County (circa 6,000 years ago), facilitated the projection of
major non-material aspects of the La Jolla Complex, and revealed the pattern of civilization at this site
over a continuous period of 5,000 years. The report for the investigation included over 600 pages, with
nearly 500,000 words of text, illustrations, maps, and photographs documenting this major study.

City of San Diego Reclaimed Water Distribution System: A cultural resource study of nearly 400 miles of
pipeline in the city and county of San Diego.

Master Environmental Assessment Project, City of Poway: Conducted for the City of Poway to produce
a complete inventory of all recorded historic and prehistoric properties within the city. The information
was used in conjunction with the City's General Plan Update to produce a map matrix of the city
showing areas of high, moderate, and low potential for the presence of cultural resources. The effort
also included the development of the City's Cultural Resource Guidelines, which were adopted as City
policy.

Draft of the City of Carlsbad Historical and Archaeological Guidelines: Contracted by the City of
Carlsbad to produce the draft of the City's historical and archaeological guidelines for use by the
Planning Department of the City.

The Mid-Bayfront Project for the City of Chula Vista: Involved a large expanse of undeveloped
agricultural land situated between the railroad and San Diego Bay in the northwestern portion of the
city. The study included the analysis of some potentially historic features and numerous prehistoric sites.
Cultural Resources Survey and Test of Sites Within the Proposed Development of the Audie Murphy Ranch, Riverside County, California: Project manager/director of the investigation of 1,113.4 acres and 43 sites, both prehistoric and historic—included project coordination; direction of field crews; evaluation of sites for significance based on County of Riverside and CEQA guidelines; assessment of cupule, pictograph, and rock shelter sites; co-authoring of cultural resources project report. February-September 2002.

Cultural Resources Evaluation of Sites Within the Proposed Development of the Otay Ranch Village 13 Project, San Diego County, California: Project manager/director of the investigation of 1,947 acres and 76 sites, both prehistoric and historic—included project coordination and budgeting; direction of field crews; assessment of sites for significance based on County of San Diego and CEQA guidelines; co-authoring of cultural resources project report. May-November 2002.

Cultural Resources Survey for the Remote Video Surveillance Project, El Centro Sector, Imperial County: Project manager/director for a survey of 29 individual sites near the U.S./Mexico Border for proposed video surveillance camera locations associated with the San Diego Border barrier Project—project coordination and budgeting; direction of field crews; site identification and recordation; assessment of potential impacts to cultural resources; meeting and coordinating with U.S. Army Corps of Engineers, U.S. Border Patrol, and other government agencies involved; co-authoring of cultural resources project report. January, February, and July 2002.

Cultural Resources Survey and Test of Sites Within the Proposed Development of the Menifee West GPA, Riverside County, California: Project manager/director of the investigation of nine sites, both prehistoric and historic— included project coordination and budgeting; direction of field crews; assessment of sites for significance based on County of Riverside and CEQA guidelines; historic research; co-authoring of cultural resources project report. January-March 2002.

Mitigation of An Archaic Cultural Resource for the Eastlake III Woods Project for the City of Chula Vista, California: Project archaeologist/director—included direction of field crews; development and completion of data recovery program including collection of material for specialized faunal and botanical analyses; assessment of sites for significance based on CEQA guidelines; management of artifact collections cataloging and curation; data synthesis; co-authoring of cultural resources project report, in prep. September 2001-March 2002.

Cultural Resources Survey and Test of Sites Within the Proposed French Valley Specific Plan/EIR, Riverside County, California: Project manager/director of the investigation of two prehistoric and three historic sites— included project coordination and budgeting; survey of project area; Native American consultation; direction of field crews; assessment of sites for significance based on CEQA guidelines; cultural resources project report in prep. July-August 2000.

Cultural Resources Survey and Test of Sites Within the Proposed Lawson Valley Project, San Diego County, California: Project manager/director of the investigation of 28 prehistoric and two historic sites— included project coordination; direction of field crews; assessment of sites for significance based on CEQA guidelines; cultural resources project report in prep. July-August 2000.

Enhanced Cultural Resource Survey and Evaluation for the Prewitt/Schmucker/Cavadia Project, La Jolla, California: Project manager/director of the investigation of a single-dwelling parcel— included project coordination; direction of field crews; assessment of parcel for potentially buried cultural deposits; authoring of cultural resources project report. June 2000.
Cultural Resources Survey and Test of Sites Within the Proposed Development of the Menifee Ranch, Riverside County, California: Project manager/director of the investigation of one prehistoric and five historic sites—included project coordination and budgeting; direction of field crews; feature recordation; historic structure assessments; assessment of sites for significance based on CEQA guidelines; historic research; co-authoring of cultural resources project report. February-June 2000.

Salvage Mitigation of a Portion of the San Diego Presidio Identified During Water Pipe Construction for the City of San Diego, California: Project archaeologist/director—included direction of field crews; development and completion of data recovery program; management of artifact collections cataloging and curation; data synthesis and authoring of cultural resources project report in prep. April 2000.

Enhanced Cultural Resource Survey and Evaluation for the Tyrian 3 Project, La Jolla, California: Project manager/director of the investigation of a single-dwelling parcel—included project coordination; assessment of parcel for potentially buried cultural deposits; authoring of cultural resources project report. April 2000.

Enhanced Cultural Resource Survey and Evaluation for the Lamont 5 Project, Pacific Beach, California: Project manager/director of the investigation of a single-dwelling parcel—included project coordination; assessment of parcel for potentially buried cultural deposits; authoring of cultural resources project report. April 2000.

Enhanced Cultural Resource Survey and Evaluation for the Reiss Residence Project, La Jolla, California: Project manager/director of the investigation of a single-dwelling parcel—included project coordination; assessment of parcel for potentially buried cultural deposits; authoring of cultural resources project report. March-April 2000.

Salvage Mitigation of a Portion of Site SDM-W-95 (CA-SDI-211) for the Poinsettia Shores Santalina Development Project and Caltrans, Carlsbad, California: Project archaeologist/director—included direction of field crews; development and completion of data recovery program; management of artifact collections cataloging and curation; data synthesis and authoring of cultural resources project report in prep. December 1999-January 2000.

Survey and Testing of Two Prehistoric Cultural Resources for the Airway Truck Parking Project, Otay Mesa, California: Project archaeologist/director—included direction of field crews; development and completion of testing recovery program; assessment of site for significance based on CEQA guidelines; authoring of cultural resources project report, in prep. December 1999-January 2000.

Cultural Resources Phase I and II Investigations for the Tin Can Hill Segment of the Immigration and Naturalization Services Triple Fence Project Along the International Border, San Diego County, California: Project manager/director for a survey and testing of a prehistoric quarry site along the border—NRHP eligibility assessment; project coordination and budgeting; direction of field crews; feature recordation; meeting and coordinating with U.S. Army Corps of Engineers; co-authoring of cultural resources project report. December 1999-January 2000.

Mitigation of a Prehistoric Cultural Resource for the Westview High School Project for the City of San Diego, California: Project archaeologist/director—included direction of field crews; development and completion of data recovery program including collection of material for specialized faunal and botanical analyses; assessment of sites for significance based on CEQA guidelines; management of artifact collections cataloging and curation; data synthesis; co-authoring of cultural resources project report, in prep. October 1999-January 2000.

Mitigation of a Prehistoric Cultural Resource for the Otay Ranch SPA-One West Project for the City of Chula Vista, California: Project archaeologist/director—included direction of field crews; development of data recovery program; management of artifact collections cataloging and curation; assessment of
Monitoring of Grading for the Herschel Place Project, La Jolla, California: Project archaeologist/monitor—included monitoring of grading activities associated with the development of a single-dwelling parcel. September 1999.

Survey and Testing of a Historic Resource for the Osterkamp Development Project, Valley Center, California: Project archaeologist/director—included direction of field crews; development and completion of data recovery program; budget development; assessment of site for significance based on CEQA guidelines; management of artifact collections cataloging and curation; data synthesis; authoring of cultural resources project report. July-August 1999.

Survey and Testing of a Prehistoric Cultural Resource for the Proposed College Boulevard Alignment Project, Carlsbad, California: Project manager/director—included direction of field crews; development and completion of testing recovery program; assessment of site for significance based on CEQA guidelines; management of artifact collections cataloging and curation; data synthesis; authoring of cultural resources project report, in prep. July-August 1999.

Survey and Evaluation of Cultural Resources for the Palomar Christian Conference Center Project, Palomar Mountain, California: Project archaeologist—included direction of field crews; assessment of sites for significance based on CEQA guidelines; management of artifact collections cataloging and curation; data synthesis; authoring of cultural resources project report. July-August 1999.

Survey and Evaluation of Cultural Resources at the Village 2 High School Site, Otay Ranch, City of Chula Vista, California: Project manager/director—management of artifact collections cataloging and curation; assessment of site for significance based on CEQA guidelines; data synthesis; authoring of cultural resources project report. July 1999.

Cultural Resources Phase I, II, and III Investigations for the Immigration and Naturalization Services Triple Fence Project Along the International Border, San Diego County, California: Project manager/director for the survey, testing, and mitigation of sites along border—supervision of multiple field crews, NRHP eligibility assessments, Native American consultation, contribution to Environmental Assessment document, lithic and marine shell analysis, authoring of cultural resources project report. August 1997-January 2000.

Phase I, II, and II Investigations for the Scripps Poway Parkway East Project, Poway, California: Project archaeologist/project director—included recordation and assessment of multicomponent prehistoric and historic sites; direction of Phase II and III investigations; direction of laboratory analyses including prehistoric and historic collections; curation of collections; data synthesis; coauthorship of final cultural resources report. February 1994; March-September 1994; September-December 1995.

Reports/Papers

Author, coauthor, or contributor to over 2,500 cultural resources management publications, a selection of which are presented below.

2015 An Archaeological/Historical Study for the Safari Highlands Ranch Project, City of Escondido, County of San Diego.

2015 A Phase I and II Cultural Resources Assessment for the Decker Parcels II Project, Planning Case No. 36962, Riverside County, California.

2015 A Phase I and II Cultural Resources Assessment for the Decker Parcels I Project, Planning Case No. 36950, Riverside County, California.

2015 Phase I Cultural Resource Survey for the Woodward Street Senior Housing Project, City of San Marcos, California (APN 218-120-31).

2015 A Phase I and II Cultural Resource Report for the Lake Ranch Project, TR 36730, Riverside County, California.

2015 A Phase II Cultural Resource Assessment for the Munro Valley Solar Project, Inyo County, California.

2014 National Historic Preservation Act Section 106 Compliance for the Proposed Saddleback Estates Project, Riverside County, California.

2014 A Phase II Cultural Resource Evaluation Report for RIV-8137 at the Toscana Project, TR 36593, Riverside County, California.

2014 Cultural Resources Study for the Estates at Del Mar Project, City of Del Mar, San Diego, California (TTM 14-001).

2014 Cultural Resources Study for the Aliso Canyon Major Subdivision Project, Rancho Santa Fe, San Diego County, California.

2014 Cultural Resources Due Diligence Assessment of the Ocean Colony Project, City of Encinitas.

2014 A Phase I and Phase II Cultural Resource Assessment for the Citrus Heights II Project, TTM 36475, Riverside County, California.

2013 A Phase I Cultural Resource Assessment for the Modular Logistics Center, Moreno Valley, Riverside County, California.
<table>
<thead>
<tr>
<th>Year</th>
<th>Project Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>A Phase I Cultural Resources Survey of the Ivey Ranch Project, Thousand Palms, Riverside County, California.</td>
</tr>
<tr>
<td>2013</td>
<td>Cultural Resources Report for the Emerald Acres Project, Riverside County, California.</td>
</tr>
<tr>
<td>2013</td>
<td>A Cultural Resources Records Search and Review for the Pala Del Norte Conservation Bank Project, San Diego County, California.</td>
</tr>
<tr>
<td>2013</td>
<td>An Updated Phase I Cultural Resources Assessment for Tentative Tract Maps 36484 and 36485, Audie Murphy Ranch, City of Menifee, County of Riverside.</td>
</tr>
<tr>
<td>2013</td>
<td>El Centro Town Center Industrial Development Project (EDA Grant No. 07-01-06386); Result of Cultural Resource Monitoring.</td>
</tr>
<tr>
<td>2013</td>
<td>Cultural Resources Survey Report for the Renda Residence Project, 9521 La Jolla Farms Road, La Jolla, California.</td>
</tr>
<tr>
<td>2013</td>
<td>A Phase I Cultural Resource Study for the Ballpark Village Project, San Diego, California.</td>
</tr>
<tr>
<td>2013</td>
<td>Archaeological Monitoring and Mitigation Program, San Clemente Senior Housing Project, 2350 South El Camino Real, City of San Clemente, Orange County, California (CUP No. 06-065; APN-060-032-04).</td>
</tr>
<tr>
<td>2012</td>
<td>Mitigation Monitoring Report for the Los Peñasquitos Recycled Water Pipeline.</td>
</tr>
<tr>
<td>2012</td>
<td>Cultural Resources Report for Menifee Heights (Tract 32277).</td>
</tr>
<tr>
<td>2012</td>
<td>A Phase I Cultural Resource Study for the Altman Residence at 9696 La Jolla Farms Road, La Jolla, California 92037.</td>
</tr>
<tr>
<td>2012</td>
<td>A Phase I Cultural Resource Study for the Payan Property Project, San Diego, California.</td>
</tr>
<tr>
<td>2012</td>
<td>Phase I Archaeological Survey of the Rieger Residence, 13707 Durango Drive, Del Mar, California 92014, APN 300-369-49.</td>
</tr>
<tr>
<td>2011</td>
<td>Mitigation Monitoring Report for the 1887 Viking Way Project, La Jolla, California.</td>
</tr>
<tr>
<td>2011</td>
<td>Results of Archaeological Monitoring at the 10th Avenue Parking Lot Project, City of San Diego, California (APNs 534-194-02 and 03).</td>
</tr>
<tr>
<td>2011</td>
<td>Archaeological Survey of the Pelberg Residence for a Bulletin 560 Permit Application; 8335 Camino Del Oro; La Jolla, California 92037 APN 346-162-01-00.</td>
</tr>
<tr>
<td>2011</td>
<td>A Cultural Resources Survey Update and Evaluation for the Robertson Ranch West Project and an Evaluation of National Register Eligibility of Archaeological sites for Sites for Section 106 Review (NHPA).</td>
</tr>
<tr>
<td>2011</td>
<td>Mitigation Monitoring Report for the 43rd and Logan Project.</td>
</tr>
</tbody>
</table>
2011 Mitigation Monitoring Report for the Sewer Group 682 M Project, City of San Diego Project #174116.

2011 A Phase I Cultural Resource Study for the Nooren Residence Project, 8001 Calle de la Plata, La Jolla, California, Project No. 226965.

2011 A Phase I Cultural Resource Study for the Keating Residence Project, 9633 La Jolla Farms Road, La Jolla, California 92037.

2010 Pottery Canyon Site Archaeological Evaluation Project, City of San Diego, California, Contract No. H105126.

2010 Archaeological Resource Report Form: Mitigation Monitoring of the Racetrack View Drive Project, San Diego, California; Project No. 163216.

2010 A Historical Evaluation of Structures on the Butterfield Trails Property.

2010 Historic Archaeological Significance Evaluation of 1761 Haydn Drive, Encinitas, California (APN 260-276-07-00).

2010 Results of Archaeological Monitoring of the Heller/Nguyen Project, TPM 06-01, Poway, California.

2010 An Archaeological Study for the 1912 Spindrift Drive Project

2009 Cultural Resource Assessment of the North Ocean Beach Gateway Project City of San Diego #64A-003A; Project #154116.

2009 Archaeological Constraints Study of the Morgan Valley Wind Assessment Project, Lake County, California.

2008 Results of an Archaeological Review of the Helen Park Lane 3.1-acre Property (APN 314-561-31), Poway, California.

2008 Archaeological Letter Report for a Phase I Archaeological Assessment of the Valley Park Condominium Project, Ramona, California; APN 282-262-75-00.

2007 Result of an Archaeological Survey for the Villages at Promenade Project (APNs 115-180-007-3,115-180-049-1, 115-180-042-4, 115-180-047-9) in the City of Corona, Riverside County.

2007 Monitoring Results for the Capping of Site CA-SDI-6038/SDM-W-5517 within the Katzer Jamul Center Project; P00-017.

2006 Archaeological Assessment for The Johnson Project (APN 322-011-10), Poway, California.
2005 Results of Archaeological Monitoring at the El Camino Del Teatro Accelerated Sewer Replacement Project (Bid No. K041364; WO # 177741; CIP # 46-610.6).

2005 Results of Archaeological Monitoring at the Baltazar Draper Avenue Project (Project No. 15857; APN: 351-040-09).

2004 TM 5325 ER #03-14-043 Cultural Resources.

2003 Evaluation of Archaeological Resources Within the Spring Canyon Biological Mitigation Area, Otay Mesa, San Diego County, California. Brian F. Smith and Associates, San Diego, California.

2002 An Archaeological/Historical Study for the Audie Murphy Ranch Project (et al.). Brian F. Smith and Associates, San Diego, California.

2001 A Cultural Resources Survey and Site Evaluations at the Stewart Subdivision Project, Moreno Valley, County of San Diego. Brian F. Smith and Associates, San Diego, California.

1999 Results of an Archaeological Evaluation for the Anthony's Pizza Acquisition Project in Ocean Beach, City of San Diego (with L. Pierson and B. Smith). Brian F. Smith and Associates, San Diego, California.

1995 Results of a Cultural Resources Study for the 4S Ranch. Brian F. Smith and Associates, San Diego, California.

1994 Results of the Cultural Resources Mitigation Programs at Sites SDI-11,044/H and SDI-12,038 at the Salt Creek Ranch Project. Brian F. Smith and Associates, San Diego, California.

Education

Master of Science, Cultural Resource Management Archaeology 2016
St. Cloud State University, St. Cloud, Minnesota

Bachelor of Arts, Anthropology 2004
University of California, Santa Cruz

Specialized Education/Training

Archaeological Field School 2014
Pimu Catalina Island Archaeology Project

Research Interests

California Coastal / Inland Archaeology Zooarchaeology
Historic Structure Significance Eligibility Historical Archaeology
Human Behavioral Ecology Taphonomic Studies

Experience

Project Archaeologist, Faunal Analyst November 2006–Present
Brian F. Smith and Associates, Inc.

Duties include report writing, editing and production; construction monitoring management; coordination of field survey and excavation crews; laboratory and office management. Currently conducts faunal, prehistoric, and historic laboratory analysis and has conducted such analysis for over 500 projects over the past 10 years. Knowledgeable in the most recent archaeological and paleontological monitoring requirements for all Southern California lead agencies, as well as Native American monitoring requirements.
UC Santa Cruz Monterey Bay Archaeology Archives Supervisor
Santa Cruz, California
December 2003–March 2004
Supervising intern for archaeological collections housed at UC Santa Cruz. Supervised undergraduate interns and maintained curated archaeological materials recovered from the greater Monterey Bay region.

Faunal Analyst, Research Assistant
University of California, Santa Cruz
June 2003–December 2003
Intern assisting in laboratory analysis and cataloging for faunal remains collected from CA-MNT-234. Analysis included detailed zoological identification and taphonomic analysis of prehistoric marine and terrestrial mammals, birds, and fish inhabiting the greater Monterey Bay region.

Archaeological Technician, Office Manager
Archaeological Resource Management
January 2000–December 2001
Conducted construction monitoring, field survey, excavation, report editing, report production, monitoring coordination and office management.

Certifications
City of San Diego Certified Archaeological and Paleontological Monitor
40-Hour Hazardous Waste/Emergency Response OSHA 29 CFR 1910.120 (e)

Scholarly Works

Big Game, Small Game: A Comprehensive Analysis of Faunal Remains Recovered from CA-SDI-11,521, 2016, Master’s thesis on file at St. Cloud University, St. Cloud, Minnesota.

Technical Reports

Buday, Tracy M., Jennifer R. Kraft, and Brian F. Smith

Kennedy, George L., Todd A. Wirths and Jennifer R. Kraft

2013 Negative Paleontological, Archaeological, and Native American Monitoring and Mitigation Report, Tri-City Christian High School, 302 North Emerald Drive, Vista, San Diego County,

Kraft, Jennifer R.

Kraft, Jennifer R., David K. Grabski, and Brian F. Smith

Kraft, Jennifer R. and Brian F. Smith

2016 Historic Structure Assessment for 8585 La Mesa Boulevard City of La Mesa, San Diego County, California. APN 494-300-11. Prepared for Silvergate Development. Report on file at the City of La Mesa Planning Department.

2016 A Phase I Cultural Resources Study for the State/Columbia/Ash/A Block Project San Diego, California. Prepared for Bomel San Diego Equities, LLC. Report on file at the California South Coastal Information Center.

2015 *Historic Structure Assessment for the StorQuest Project, City of La Mesa, (APN 494-101-14-00).* Prepared for Real Estate Development and Entitlement. Report on file at the City of La Mesa.

2014 *Historic Structure Assessment, 161 West San Ysidro Boulevard, San Diego, California (Project No. 342196; APN 666-030-09).* Prepared for Blue Key Realty. Report on file at the California South Coastal Information Center.

2014 *Historic Structure Assessment for 8055 La Mesa Boulevard, City of La Mesa (APN 470-582-11-00).* Prepared for Lee Machado. Report on file at the City of La Mesa.

2014 *Phase I Cultural Resource Survey for the Silver Street Village Homes Project, City of San Diego.* Prepared for EHOF La Jolla, LLC. Report on file at the California South Coastal Information Center.

2014 *Phase I Cultural Resources Study for the 915 Grape Street Project.* Prepared for Bay View SD, LLC. Report on file at the California South Coastal Information Center.

2014 *Phase I Cultural Resource Study for the Altman Residence Project, 9696 La Jolla Farms Road, La Jolla, California 92037.* Prepared for Steve Altman. Report on file at the California South Coastal Information Center.

2014 *A Phase I Cultural Resources Survey of the Palm Creek Ranch Project, Thousand Palms, Riverside County, California (APNs 650-230-002, 650-310-001, and 650-310-002).* Prepared for Palm Creek Ranch, LLC. Report on file at the California Eastern Information Center.

2013 *Mitigation Monitoring Report for the Knight Residence Project, 7970 Roseland Avenue, La Jolla, California.* Prepared for Mr. Dennis Knight. Report on file at the California South Coastal Information Center.

2013 *Phase I Cultural Resource Study for the 3364 Randy Lane Project, Chula Vista, California.* Prepared for H&M Construction. Report on file at the California South Coastal Information Center.

Kraft, Jennifer R. and Tracy A. Stropes

Kraft, Jennifer R., Tracy A. Stropes, and Brian F. Smith

Smith, Brian F., Claire M. Allen, and Jennifer R. Kraft

Smith, Brian F., Claire M. Allen, Mary M. Lenich, and Jennifer R. Kraft
Smith, Brian F. and Jennifer R. Kraft

2016 Historical Resource Research Report for the Midway Drive Postal Service Processing and Distribution Center 2535 Midway Drive San Diego, California 92138 Project No. 507152. Prepared for Steelwave, LLC. Report on file at the City of San Diego Development Services Department.

Smith, Brian F., Jennifer R. Kraft, and Mary M. Lenich

Smith, Brian F. and Jennifer R.K. Stropes

Smith, Brian F., Tracy A. Stropes, Tracy M. Buday, and Jennifer R. Kraft
2015 *Mitigation Monitoring and Reporting Program for the 1900 Spindrift Drive – Cabana and Landscape Improvements Project, La Jolla, California.* Prepared for Darwin Deason. Report on file at the California South Coastal Information Center.

Stropes, J.R.K. and Brian F. Smith

Stropes, J.R.K., Tracy A. Stropes, and Brian F. Smith
2016 *Results of the Mitigation Monitoring Program for the Amitai Residence Project 2514 Ellentown Road La Jolla, California 92037 Project No. 388734.* Prepared for David Amitai. Report on file at the California South Coastal Information Center.

Stropes, Tracy A., Jennifer R. Kraft, and Brian F. Smith

Stropes, Tracy A., Brian F. Smith, and Jennifer R. Kraft
2015 *Results of the Mitigation Monitoring Program for the Keating Residence Project, La Jolla, California.* Prepared for Brian Keating. Report on file at the California South Coastal Information Center.

Contributing Author /Analyst

2010 Faunal Analysis and Report Section for *An Archaeological Study for the 1912 Spindrift Drive Project, La Jolla, California* by Brian F. Smith and Tracy A. Stropes. Prepared for Island Architects. Report on file at the California South Coastal Information Center.

APPENDIX B

Updated Site Record Forms

(Deleted for Public Review; Bound Separately)
APPENDIX C

Archaeological Records Search Results

(Deleted for Public Review; Bound Separately)
APPENDIX D

NAHC Sacred Lands File Search

(Deleted for Public Review; Bound Separately)
Building Development Information
COMMERCIAL-INDUSTRIAL BUILDING RECORD

NAME: David Perez
ADDRESS: 2361 Air Lane
ASSESSOR, SAN DIEGO COUNTY

<table>
<thead>
<tr>
<th>CLASS & SHAPE</th>
<th>FRAME</th>
<th>TRUSSES</th>
<th>EXT. FINISH</th>
<th>ROOF</th>
<th>LIGHTING</th>
<th>FRONT</th>
<th>NUMBER OF ROOMS</th>
<th>INTERIOR CONSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wood</td>
<td>Concrete Reinf.</td>
<td>Light</td>
<td>Stucco</td>
<td>Flat</td>
<td>Standard</td>
<td>1</td>
<td>Desc. B M T 2 3 FLOORS GD WALLS GD CEILING GD</td>
</tr>
<tr>
<td>Stories</td>
<td>Steel</td>
<td>'Span Spaced'</td>
<td>Metal</td>
<td>Arch</td>
<td>Shed</td>
<td>Below Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basmt. Mez.</td>
<td>No Frame</td>
<td>FLOORS</td>
<td>Veneer</td>
<td>Gable</td>
<td>FIXTURES</td>
<td>Glass in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USE DESIGN</td>
<td>FLOOR</td>
<td>WALLS</td>
<td>Wood</td>
<td>Wood</td>
<td>Fluorescent</td>
<td>Metal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garage</td>
<td>Wood</td>
<td>Wood</td>
<td>Wood</td>
<td>Metal</td>
<td>Incandescent</td>
<td>Glass Doors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Store</td>
<td>Brick</td>
<td>Sub-Floor</td>
<td>Glass</td>
<td>Concrete</td>
<td>Quality</td>
<td>Bulkhead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td>Conc. Blk</td>
<td>Elevation</td>
<td>Concrete</td>
<td>Auto</td>
<td>No.</td>
<td>Office</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factory</td>
<td>Metal</td>
<td>FOUNDATION</td>
<td>Wood</td>
<td>Built-Up</td>
<td>Fixture</td>
<td>Drop Ceiling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warehouse</td>
<td>Tilt Up</td>
<td>WINDOWS</td>
<td>Metal</td>
<td>Quality</td>
<td>Quality</td>
<td>Sprinkler</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONSTRUCTION RECORD

<table>
<thead>
<tr>
<th>Permit</th>
<th>EFLEC.</th>
<th>APPR.</th>
<th>NOR. % GOOD</th>
<th>RATING (E, Q, A, F, P)</th>
<th>ITEM</th>
<th>NO. - CAPACITY</th>
<th>MATERIAL OR TYPE</th>
<th>QUAL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>For</td>
<td>Amount</td>
<td>Date</td>
<td>Eff. Year</td>
<td>Year</td>
<td>Age</td>
<td>Rem. Life</td>
<td>Table</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>life</td>
<td>table</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1971</td>
<td>1972</td>
<td>1</td>
<td>25</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1971</td>
<td>1972</td>
<td>1</td>
<td>29</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Appraiser and Date:
[Signature] 12-7-71

<table>
<thead>
<tr>
<th>UNIT</th>
<th>AREA/ UNIT</th>
<th>UNIT COST</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Total: 2700
Normal % Good: 100
R.C.L.N.D.: 2700
<table>
<thead>
<tr>
<th>STRUCTURE</th>
<th>FOUND.</th>
<th>FLOOR</th>
<th>CONST.</th>
<th>EXT.</th>
<th>ROOF</th>
<th>DIM.</th>
<th>AREA/UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMPUTATIONS

-
-
-
-

REMARKS: 27/09 1971 09:20-12:30
Commercial-Industrial Building Record

Assessor, San Diego County

<table>
<thead>
<tr>
<th>Account No.</th>
<th>Parcel No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>760-039-08-01</td>
</tr>
</tbody>
</table>

Name: [Name]

Address: [Address]

<table>
<thead>
<tr>
<th>Class & Shape</th>
<th>Frame</th>
<th>Trusses</th>
<th>Ext. Finish</th>
<th>Roof</th>
<th>Lighting</th>
<th>Front</th>
<th>Number of Rooms</th>
<th>Interior Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Details]</td>
<td>[Details]</td>
<td>[Details]</td>
<td>[Details]</td>
<td>[Details]</td>
<td>[Details]</td>
<td>[Details]</td>
<td>[Details]</td>
<td>[Details]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stories</th>
<th>[Details]</th>
<th>Base</th>
<th>Mass</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>USE</th>
<th>DESIGN</th>
<th>WALLS</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Garage</th>
<th>Wood</th>
<th>Wood</th>
<th>Glass</th>
<th>Metal</th>
<th>Wood</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Office</th>
<th>Conc. Bldg</th>
<th>Elevation</th>
<th>Quality</th>
<th>Bulkhead</th>
<th>Office</th>
<th>1</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Foundation</th>
<th>ROOF COVER</th>
<th>Quantity</th>
<th>Quality</th>
<th>Back Trim</th>
<th>Lobby</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Warehouse</th>
<th>Tilt</th>
<th>Up</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pilasters</th>
<th>Concrete Rein.</th>
<th>Metal</th>
<th>Built-Up</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Party</th>
<th>Masonry</th>
<th>Wood</th>
<th>Quality</th>
<th>Sprinklers</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
</tr>
</thead>
</table>

Construction Record

<table>
<thead>
<tr>
<th>No.</th>
<th>Permit</th>
<th>Amount</th>
<th>Date</th>
<th>Eff. Year</th>
<th>Appr. Year</th>
<th>Age</th>
<th>Rem. Life</th>
<th>Table</th>
<th>%</th>
<th>Rating (E,G,A,F,P)</th>
<th>Item</th>
<th>No. Cap.</th>
<th>Material or Type</th>
<th>Qual.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[Details]</td>
</tr>
</tbody>
</table>

Appraiser and Date

<table>
<thead>
<tr>
<th>UNIT</th>
<th>Area/Unit</th>
<th>Unit Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24,000</td>
<td>7,000</td>
<td>164,000</td>
<td>275</td>
<td>25,000</td>
<td>6,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>TOTAL</th>
<th>[Details]</th>
<th>[Details]</th>
<th>[Details]</th>
</tr>
</thead>
</table>

Normal % Good

- R.C.I.N.D.

- 100

- 98

Checked

- [Details]

Reviewed

- [Details]

- [Details]
COMMERCIAL-INDUSTRIAL BUILDING RECORD

ASSESSOR, SAN DIEGO COUNTY

Parcel No. 66-8-01

<table>
<thead>
<tr>
<th>NAME</th>
<th>ADDRESS</th>
<th>SHEET 2 OF 4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CLASS & SHAPE</th>
<th>FRAME</th>
<th>TRUSSES</th>
<th>EXT. FINISH</th>
<th>ROOF</th>
<th>LIGHTING</th>
<th>FRONT</th>
<th>INTERIOR CONSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stories /</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NUMBER OF ROOMS</td>
</tr>
<tr>
<td>Basement / Mezz</td>
<td>No Frame</td>
<td>FLOORS</td>
<td>Veneer</td>
<td>Gable</td>
<td>FIXTURES</td>
<td>Glass in</td>
<td>MATERIALS</td>
</tr>
<tr>
<td>Garage</td>
<td></td>
<td>Concrete</td>
<td>Wood</td>
<td>Wood</td>
<td>Fluorescent</td>
<td>Metal</td>
<td>Wood</td>
</tr>
<tr>
<td>Office</td>
<td></td>
<td>Concrete, Blk.</td>
<td>Elevator</td>
<td></td>
<td></td>
<td>Concrete</td>
<td></td>
</tr>
<tr>
<td>Factory</td>
<td></td>
<td>Metal</td>
<td></td>
<td></td>
<td></td>
<td>Quality</td>
<td></td>
</tr>
<tr>
<td>Warehouse</td>
<td></td>
<td>Tilt Up</td>
<td>FOUNDATION</td>
<td>Composition</td>
<td>PLUMBING</td>
<td>Lighting</td>
<td>Hall</td>
</tr>
<tr>
<td>Pierters</td>
<td></td>
<td>Concrete, Raint.</td>
<td>Metal</td>
<td></td>
<td>Built-Up</td>
<td>9T</td>
<td>FEATURES</td>
</tr>
<tr>
<td>Party</td>
<td></td>
<td>Masonry</td>
<td>Wood</td>
<td></td>
<td></td>
<td>Quality</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSTRUCTION RECORD</th>
<th>NORMAL % GOOD</th>
<th>RATING (E, G, A, F, P)</th>
<th>ITEM</th>
<th>NO. CAPACITY</th>
<th>MATERIALS OR TYPE</th>
<th>QUA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appraiser and Date

<table>
<thead>
<tr>
<th>UNIT</th>
<th>AREA/UNIT</th>
<th>UNIT COST</th>
<th>COST</th>
<th>UNIT COST</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Fl</td>
<td>1840</td>
<td>26.00</td>
<td>46520</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>2nd Fl</td>
<td>1780</td>
<td>18.00</td>
<td>33552</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Total

| Normal % Good | 78.95% |

R.C.L.N.D.

| REL.A-21 (1970) | 100 |

Cost

| 78.95% | 722377 |
COMPUTATIONS

<table>
<thead>
<tr>
<th>Area 1st</th>
<th>24'x20' = 480</th>
<th>14'x12' = 1680</th>
<th>24'x12' = 2880</th>
<th>14'x16' = 224</th>
<th>Dock 4'x48' = 240</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>480</td>
<td>1680</td>
<td>2880</td>
<td>224</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS: Post 74-738 6-7-71 07-000
<table>
<thead>
<tr>
<th>CLASS & SHAPE</th>
<th>FRAME</th>
<th>TRUSSES</th>
<th>EXT. FINISH</th>
<th>ROOF</th>
<th>LIGHTING</th>
<th>FRONT</th>
<th>NUMBER OF ROOMS</th>
<th>INTERIOR CONSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wood</td>
<td>Light</td>
<td>Heavy Flat</td>
<td>Steel</td>
<td>Arch</td>
<td></td>
<td>1</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>Concrete Rem.</td>
<td>Wood</td>
<td>Steel</td>
<td>Wood</td>
<td>Veneer</td>
<td></td>
<td>2</td>
<td>Office</td>
</tr>
<tr>
<td>USE DESIGN</td>
<td>FLOORS</td>
<td>WALLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garage</td>
<td>Wood</td>
<td>Concrete</td>
<td>Wood</td>
<td>Wood</td>
<td>Glass</td>
<td>Metal</td>
<td>3</td>
<td>Restroom</td>
</tr>
<tr>
<td>Store</td>
<td>Brick</td>
<td></td>
<td>Glass</td>
<td>Metal</td>
<td>Incandescent</td>
<td>Auto No.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td>Conc. Bk</td>
<td>Elevation</td>
<td>Concrete</td>
<td>Quality</td>
<td>Bulkhead</td>
<td>Office</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Factory</td>
<td>Metal</td>
<td></td>
<td>Material</td>
<td>Quality</td>
<td>Bulkhead</td>
<td>Office</td>
<td>6</td>
<td>Special Features</td>
</tr>
<tr>
<td>Warehouse</td>
<td>Tilt Up</td>
<td>FOUNDATION</td>
<td>WINDOWS</td>
<td>ROOF COVER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pilasters</td>
<td>Concrete Rem.</td>
<td>Metal</td>
<td>Built-Up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Party Masonry</td>
<td>Wood</td>
<td>Metal</td>
<td>Fire Sprinklers</td>
<td>Quality</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONSTRUCTION RECORD

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E9401</td>
<td>2500 1921 0</td>
<td>1921 0</td>
<td>60 40 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N48</td>
<td>15000 2.79 1921 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL FEATURES

- Air Cond
- Doors
- Sky-Lites
- Elevator

Appraiser and Date

- Int Office 6x4 27 16 6 500 33650
- Int Office 6x7 27 16 6 500 33650

TOTAL

<table>
<thead>
<tr>
<th>UNIT</th>
<th>AREA UNIT</th>
<th>UNIT COST</th>
<th>COST</th>
</tr>
</thead>
</table>

Total Normal % Good

R.C.I.N.D.
MISCELLANEOUS STRUCTURES

<table>
<thead>
<tr>
<th>STRUCTURE</th>
<th>FOUND.</th>
<th>FLOOR</th>
<th>CONST.</th>
<th>EXT.</th>
<th>ROOF</th>
<th>DIM.</th>
<th>AREA/UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMPUTATIONS

Area

<table>
<thead>
<tr>
<th>Off.</th>
<th>17.45</th>
<th>62.4</th>
<th>1174</th>
<th>289.05</th>
<th>1174</th>
<th>3.5</th>
<th>1174</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Construction

- [Notes]

REMARKS

- Cost $16,740/147127-020 W-1-12
- [More notes]

- Existing space 1SF 140
Maps
Figure 1
1930 USGS Map
The SDIA Airport Development Plan Project
USGS La Jolla and San Diego Quadrangles (1:62,500 scale series)
Figure 2
1942 and 1943 USGS Maps
The SDIA Airport Development Plan Project
USGS La Jolla and Point Loma Quadrangles (7.5-minute series)
Figure 3
1953 USGS Map
The SDIA Airport Development Plan Project
USGS La Jolla and Point Loma Quadrangles (7.5-minute series)
Figure 4
1967 USGS Map

The SDIA Airport Development Plan Project

USGS La Jolla and Point Loma Quadrangles (7.5-minute series)
Figure 5
1975 USGS Map
The SDIA Airport Development Plan Project
USGS La Jolla and Point Loma Quadrangles (7.5-minute series)
Figure 6
1979 USGS Map
The SDIA Airport Development Plan Project
USGS San Diego Quadrangle (1:100,000 scale series)
Figure 7
1996 USGS Map
The SDIA Airport Development Plan Project
USGS La Jolla and Point Loma Quadrangles (7.5-minute series)
Figure 8
Current USGS Map
The SDIA Airport Development Plan Project
USGS La Jolla and Point Loma Quadrangles (7.5-minute series)
Figure 10
Current Assessor's Parcel Map for Terminal 2 East
The SDIA Airport Development Plan Project
Figure 13
Current Assessor’s Parcel Boundary for the Air Support Facilities Building
The SDIA Airport Development Plan Project
Figure 15
Current Assessor's Parcel Boundary for the
United Airlines Hangar and Terminal Building
The SDIA Airport Development Plan Project
APPENDIX F

HABS/HAER Documentation